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Amultiple neural network controller is proposedanddemonstrated to suppress the pressure oscillation of theRijke

tube acoustic network. This controller consists of three modules including two separate neural networks, i.e., the

neural network of controlled object that is pretrained before control and the neural network of controller that is

trained in real time during the control process. This controller can identify the characteristics of oscillating

combustion, achieve adaptive output, and extend the applicability and expansibility. Results show that multiple

neural network controller can suppress the pressure oscillation in different oscillating stages using fuel valve or

loudspeaker as actuators. When the exact mathematical model of the controlled object is difficult to obtain, it is

effective to take a zero-dimensional simplified model with similar oscillating characteristics for prototype controller,

and then actively control the real controlled object through parameter migration. It is further demonstrated that this

controller is insensitive to noise. In addition, delay correction is achievedbyadding sensor andactuator delaymodules

to the original controller to offset the effects of system delay.

I. Introduction

O SCILLATING combustion is a phenomenon of combustion

instability in rocket engine [1–5], aero-engine afterburner

[6–10], lean premixed heavy duty gas turbine [11–14], and industrial

furnaces [15–19], which has adverse effects on combustion system

and attracts wide attentions. Oscillating combustion is a mutually

excited cyclic oscillation process when the unsteady heat release

frequency in a combustion chamber is close to the characteristic

frequency of the geometric structure [20]. In the intrinsic acoustic

mode of the combustion chamber, the inherent disturbance of the

system is self-excited through the interaction with the combustion

process, forming large-amplitude pressure, velocity, and heat release

fluctuations [21,22]. The amplitude of pressure fluctuations increases

linearly with time at the initial stage of oscillating combustion.

Affected by nonlinear mechanisms such as the increase of sound

energy dissipation or the phase change between unsteady heat release

fluctuation and pressure fluctuation, this pressure amplitude tends to

be saturated and finally reaches the limit cycle state [5,6,21–23].

Currently, two types of approaches are widely adopted to inves-

tigate oscillating combustion. One is 3D compressible computational

fluid dynamics simulation [13,24–27] resolving the unsteady heat

release and acoustic oscillation simultaneously, which is relatively

time-consuming, and sensitive to numerical schemes, turbulence,

and combustion models and boundary conditions. The other is a

low-order acoustic network model, which simplifies the combustor

structure into a series of simple geometric units, decouples the

acoustic process from the combustion process, and consequently

requires small demand for computing resources [8,28–32]. For exam-

ple, Gonzalez-Flesca et al. [29] described a reduced-order numerical

framework to simulate combustion instabilities in liquid rocket

engines, which relied on the projection of the pressure fluctuations
on the eigenmodes of the system.After projection on the eigenmodes,
thewave equation takes the formof a series of second-order harmonic
equations with source terms that drive combustion instabilities
and damping terms that attenuate them. The predictions from this
reduced-order approachwere validated against with the experimental
data. Mahmoudi et al. [30] presented a low-order model to study the
propagation and interaction of acoustic and entropic perturbations
through a convergent–divergent nozzle. The calculations considered
choked, unchoked, as well as compact and noncompact nozzles.
Results showed that the entropy noise was the main source of noise
downstream of the choked nozzle and the vorticity noise had a
negligible contribution. This low-ordermodel was in excellent agree-
ment with the experimental results of the entropy wave generator and
hot acoustic test rig.
In the design process of oscillating combustion controller, it is

necessary to construct a simplified model of the controlled object, so
as to effectively capture the oscillating characteristics of the con-
trolled object and quickly respond to the controller output [33–36].
Using low-dimensional acoustic network as this simplified model is
an effective solution when the exact mathematical model of the
controlled object is difficult to obtain. Considerable researches have
been reported on developing various oscillating combustion control-
lers based on a low-dimensional acoustic network model, due to its
rapid yet reliable capture of the oscillating characteristics [37–39].
Both passive control and active control can be adopted to suppress

the oscillating combustion. For passive control, oscillating combus-
tion is inhibited at specific frequencies by adjusting combustion
organization or using acoustic resonators [40–42]. For active control,
the sensor measurements are obtained for the calculation of active
control algorithm, and the controller output is dynamically adjusted
to suppress the oscillating process [33–36]. Due to the flexibility and
adaptability of active control, various types of active controllers have
been developed in recent years [39], including phase shift controller
[39,43], linear optimal controller [43,44], time-delay controller [45],
and adaptive controller [46,47]. Chae andLee [33] conducted a series
of combustion tests to actively control and suppress the initiation of
low-frequency instability by using fuel inserts. Results showed that
fuel insert could delay the low-frequency instability, and the number
and locations of the fuel inserts played important roles in determining
the level of suppression as well as the phase difference between the
pressure and heat release oscillations. Properly locating two fuel
inserts simultaneously in the axial direction could suppress the
oscillating combustion completely. John et al. [36] demonstrated
active combustion instability suppression using the adaptive sliding
phasor average control method in a combustion test cell operating at
engine-relevant pressure, temperature, and flow conditions. With a
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high-frequency fuel valve for the inflowing fuel perturbation and a
dynamic pressure sensor in the combustor for controller feedback,
successful instability suppression was achieved when combustor
operation transitions from a stable low-power condition to a normally
unstable high-power condition.
In our previous study [47], a neural network Proportional Integral

Derivative (PID) controller is attempted to achieve the active control
of oscillating combustion in a Rijke tube. The controller consists of
the conventional PID component and a neural network component,
where the PID control parameters are adjusted in real time by the
neural network based on the system working conditions. In this
controller configuration, the PID controller directly controls the
controlled object. Although this controller can effectively suppress
the oscillating reference pressure of a Rijke tube model system under
certain circumstances, it has deficiencies in the adaptability of the
controlled object. It needs an accurate mathematical model of the
controlled object to build the control algorithm, and needs time-
consuming empirical PID parameter tuning. Moreover, this control-
ler does not consider the ubiquitous effects of system delay. In this
study, a multiple neural network controller is proposed to address
these challenges. It is demonstrated to suppress the pressure oscil-
lation of the Rijke tube model system with its dynamics being
governed by an analytical acoustic network model. Taking the Rijke
tube acoustic network model as the controlled object, this active
controller identifies and learns the oscillating combustion model
through the neural network of controlled object, which enhances
the adaptability of this controller to the controlled object due to the
highly nonlinear generalization of neural network. Another neural
network of controller is adopted to achieve the adaptive output. The
effects of system delay on the performance of controller are studied in
detail. Parameter migration method is used to initialize the controller
parameters of the Rijke tube acoustic networkmodel,which avoids the
empirical tuning of PID parameters.
The remainder of this paper is organized as follows. In Sec. II,

the Rijke tube acoustic network model is introduced, followed by the
description of the multiple neural network controller. In Sec. III, the
performance of this controller and the effects of parameter migration,
noise, and systemdelay are analyzed in detail. Conclusions are drawn
in Sec. IV.

II. Methodology

A. Rijke Tube Acoustic Network Model

Rijke tube provides the simplest means of obtaining combustion
instabilities on a laboratory scale, and it is widely adopted as con-
trolled object in the research of oscillating combustion control
[37,38,47–49]. For example, Morgans and Dowling [37] designed
a model-based active controller for a laboratory-scale Rijke tube
combustion system as shown in Fig. 1a. A propane-fuelled Bunsen
burner provided a flat laminar flame, which was stabilized on a grid.
A microphone and loudspeaker were adopted as sensor and actuator,
respectively. The unstable open-loop transfer function was measured
experimentally. With the assumptions of compact combustion zone,
ignoring the dissipation of acoustic waves, neglecting the entropy
wave, and considering only longitudinal wave, a low-order acoustic

network model was formulated to model the pressure oscillation in

this Rijke tube system. A robust model-based controller is then

designed and implemented based on the simulation results of the

acoustic network model.
In this study, as shown in Fig. 1b, a cylindrical Rijke tube model

system with a constant cross section and both ends open is employed

to demonstrate the active control oscillating combustion with multi-

ple neural networks. The inlet and outlet of the Rijke tube locate at

x � −x1 and x � x2. An ethylene premixed flame is used as the heat

source of the system. Following the same assumptions as in [37], the

acoustic wave can be described by the superposition of forward and

backward propagating plane waves considering that only the longi-

tudinal waves are taken into account. Two kinds of independent

control actuators are adopted: one is the loudspeaker locating at the

tube inlet, and the other is the fuel valve that affects the characteristics

of the system oscillation by changing the heat release characteristics

at the flame location. A microphone sensor is adopted at x � xr.
Denote the upstream and downstream regions of the premixed flame

by subscripts 1 and 2, the mean flow variables with an overbar, and

small perturbations with a prime. The corresponding analytical

acoustic network model as in [37,38,47–49] is given by

p1�x; t� � �p1 � p 0
1�x; t� � �p1 � A�

1 �t − τ�1 � � A−
1 �t� τ−1 � (1)

u1�x; t� � �u1 � u 0
1�x; t� � �u1 �

1

�ρ1 �c1
�A�

1 �t − τ�1 � − A−
1 �t� τ−1 ��

(2)

p2�x; t� � �p2 � p 0
2�x; t� � �p2 � A�

2 �t − τ�2 � � A−
2 �t� τ−2 � (3)

u2�x; t� � �u2 � u 0
2�x; t� � �u2 �

1

�ρ2 �c2
�A�

2 �t − τ�2 � − A−
2 �t� τ−2 ��

(4)

τ�1 � x

�c1 � �u1
(5)

τ−1 � x

�c1 − �u1
(6)

τ�2 � x

�c2 � �u2
(7)

τ−2 � x

�c2 − �u2
(8)

where u and c represent the velocity and speed of sound, τ denotes the
time delay, A� and A− represent the amplitudes of the backward and

forward propagating plane waves. Considering the conservation of

mass, momentum, and energy together with the equation of state for

perfect gas, the governing equation in the Laplace domain for this

Rijke tube model system is given by

Fig. 1 Schematic diagram of a) the Rijke tube system and b) the corresponding model system for acoustic network model.
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"
X11 X12

X21 X22

#"
A−
1 �s�

A�
2 �s�

#
�

"
Y11 Y12

Y21 Y22

#"
R1�s�A−

1 �s�e−τ1s
R2�s�A�

2 �s�e−τ2s

#

�
"

0

−1

#
_q 0�s�
�c1

(9)

where R1 and R2 represent the pressure reflection coefficients at the

inlet and outlet. The components of matrices X and Y are given by

X �

0
B@ −1� �M1

�
2 − �u2

�u1

�
− �M2

1

�
1 − �u2

�u1

�
1� �M1

�ρ1 �c1
�ρ2 �c2

1−γ �M1

γ−1 � �M2
1 −

�M2
1

2
�1 − �M1�

�
�u2
2

�u2
1

− 1
�

�c2
�c1

1�γ �M2

γ−1 � �M1
�M2

�ρ1
�ρ2

1
CA

(10)

Y�

0
B@

1− �M1

1� �M1

�
1− �M1

�
2− �u2

�u1

�
� �M2

1

�
1− �u2

�u1

��
1− �M1

�ρ1 �c1
�ρ2 �c2

1− �M1

1� �M1

�
1�γ �M1

γ−1 � �M2
1−

�M2
1

2
�1� �M1�

�
�u2
2

�u2
1

−1
��

− �c2
�c1

1−γ �M2

γ−1 − �M1
�M2

�ρ1
�ρ2

1
CA

(11)

where �M represents the Mach number. The heat release perturbation

_q 0 is described by the following flame model [50,51]:

_q 0�s�
�_q

� T �s�
�
u 0�s�
�u

−
ϕ 0�s�
�ϕ

�
(12)

T �s� � ωc

s� ωc

nfe
−τfs (13)

where T represents the flame function, ϕ denotes the equivalence

ratio, nf,ωc, and τf represent the gain, cutoff angular frequency, and
time delay, respectively. In this study,ωc is 200π, τf is 0.001 s, andnf
is determined as in [52] by

nf �
Z

û1∕ �u1

0

1

1� �α� 0.85�30 dα (14)

where û represents the velocity amplitude.
The governing equations are slightly different when the fuel valve

or loudspeaker is used as actuators. When using fuel valve, the

instantaneous flow rate is changed, and equivalence ratio fluctuations

are generated, which affects the last term of Eq. (12), and then affects

the _q 0 term in Eq. (9). The governing equations solved are Eqs. (1–

14). When using loudspeaker, the pressure generated by the loud-

speaker acts directly on the longitudinally propagating oscillating

combustion pressure field. Equations (1), (2), and (9) become

p1�x; t� � �p1 � A�
1 �t − τ�1 � � A−

1 �t� τ−1 � � PL�t − τ�1 � (15)

u1�x; t� � �u1 �
1

�ρ1 �c1
�A�

1 �t − τ�k � − A−
1 �t� τ−k � � PL�t − τ�1 ��

(16)

"
X11 X12

X21 X22

#"
A−
1 �s�

A�
2 �s�

#

�
"
Y11 Y12

Y21 Y22

#"
R1�s�A−

1 �s�e−τ1s � PL�s�e−τLs
R2�s�A�

2 �s�e−τ2s

#

�
"

0

−1

#
_q 0�s�
�c1

(17)

where PL represents the loudspeaker sound signal, and τL is the

loudspeaker time delay. Hence the governing equations solved are

Eqs. (3–8) and (10–17).

The geometric parameters and thermodynamic conditions of the
Rijke tube model system are listed in Table 1, where “Eff” represents
the combustion efficiency.
Figure 2 shows the evolution of pressure oscillation normalized by

atmospheric pressure, growth rate, and frequency of the Rijke tube
model. The growth rate is expressed in terms of the change rate in the
natural logarithm of pressure oscillation amplitude. As shown, with
the nonlinear flamemodel, the normalized pressure oscillation can be
divided into three stages: linear growth stage, transition stage, and
saturation stage. In the linear growth stage, the growth rate of the
pressure oscillation remains unchanged at 5.86 s−1. In the transition

stage, the growth rate gradually decreases from 5.86 s−1 to 0, and the
pressure oscillation is saturated. In the saturation stage, the pressure
oscillation amplitude is saturated at 2956 Pa, and the system oscil-
lation frequency remains 135.5 Hz.

B. Multiple Neural Network Controller

The specific structure of the multiple neural network controller
adopted is shown in Fig. 3, where uc denotes the controller output,p0

represents the oscillating pressures at several continuous historical

Table 1 Geometric parameters
and thermodynamic conditions of

the Rijke tube model system

Item Unit Value

x1 M 0.8

x2 M 1.0

xr M 0.5

�P1 Pa 101,325

�T1 K 300

�M1 —— 0.11

Gas —— Ethylene
Eff —— 0.8

ϕ —— 0.7

R1 —— −1
R2 —— −1

Fig. 2 Oscillation evolution of the Rijke tube model. a) Normalized
pressure; b) growth rate; c) frequency.

Fig. 3 Structure of the multiple neural network controller.
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times, and p1 represents the predicted pressure at the next moment.

This controller takes the Rijke tube model system of Fig. 1b as the
controlled object, and consists of three modules including two sep-

arate neural networks, one for controlled object and the other for the
controller. The neural network of controlled object is used to predict

the future data p1 of the controlled object through the historical data
p0 of the controlled object and the controller outputuc. It is pretrained
using a flat-band signal taken from pseudorandom number series for

the training set and a step signal for the validation set. The root-mean-
squared errors between the outputs of this neural network and the

Rijke tube acoustic network model are used as the loss function. The
neural network of controller is trained in real time through historical
data p0, future data p1 of the controlled object, and system reference

values. The controller output uc at the next moment is outputted for
the calculation of the Rijke tube acoustic network model and neural

network of the controlled object.
The neural network structures of controlled object and controller

are shown in Fig. 4. The neural network of controlled object adopts a
three-layer backpropagation neural network structure consisting of

four input neurons, three hidden neurons, and one output neuron. The
four input neurons correspond to three historical datap0 of controlled
object and the controller output uc at the current moment. The one

output neuron corresponds to the future data p1 at the next moment.
The inputs and outputs of hidden and output layers are shown as

follows:

neth�t� � WiK �
X4
m�1

wimkm (18)

Oh�t� � f�neth�t�� (19)

f�x� � ex − e−x

ex � e−x
(20)

neto�t� �
X3
n�1

whnOhn (21)

Oo�t� � f�neto�t�� (22)

L � �p1 − θ�2 (23)

where K represents the input neurons, wi and wh are the weights of
input and hidden layers, neth and neto are the total inputs of hidden
and output neurons,Oh andOo are the outputs of hidden and output
neurons, f is the hyperbolic tangent activation function, and L is the
loss function. The neural network of controller adopts a three-layer

neural network structure, including three input neurons, three hidden
neurons, and one output neuron. The three input neurons correspond

to three historical data p0 of controlled object, and the one output
neuron corresponds to the controller output uc at the next moment.
The loss function is the mean-squared error between the reference

value θ and the predicted future data p1 from the neural network of
the controlled object. For the Rijke tube model system considered in

this study, the above neural network structure and the number of

neurons can meet the requirements of controller design. For more
complex controlled objects, the structure and the number of neurons
for these two neural networks may need to be adjusted. In addition,
the clustering prediction method [16] could be employed to improve
the prediction accuracy of neural network especially for controlled
objects with complex dynamic phenomena or long-term prediction
requirements.
The workflow of this multiple neural network controller is as

follows:
1) Use the flat-band output signal taken from pseudorandom

number series and the step output signal to construct training and
validation sets for the neural network of controlled object.
2) Pretrain the neural network of controlled object to obtain the

approximation model of the Rijke tube acoustic network.
3) Build the multiple neural network controller and set the refer-

ence value.
4) Optimize the neural network of controller in real time to sup-

press the oscillating combustion of the controlled object.

III. Results and Discussion

A. Performance of Multiple Neural Networks Controller

The training and validation sets for the neural network of con-
trolled object using fuel valve as actuator are shown in Fig. 5, with the
number of data in the training and validation sets being the same of
150,000. Figures 5a and 5c are the controller outputs of the training
and validation sets, and Figs. 5b and 5d are the normalized pressure
oscillations, respectively. With the effects of the flat-band output
signal taken from pseudorandom number series, the pressure oscil-
lated randomly, and the pressure oscillation amplitude was within
�0.03. With the effects of the step output signal, the pressure
oscillated violently in the initial stage with an oscillation amplitude
of �0.22, and then gradually attenuated to a periodic oscillation of
�0.03. The significant differences between the training and valida-
tion sets were beneficial for the neural network of controlled object to
learn the characteristics of the nonlinear Rijke tube acoustic network.
Figure 6 shows the training results of the neural network of

controlled object. The evolutions of training results, validation
results, and loss function are shown in Figs. 6a–6c, respectively.
With the increase of the number of training cycles, this neural net-
work could fit the variation trend of system pressure with high
precision under the effects of the flat-band and step output signals.
The root-mean-squared errors decreased rapidly and finally remained
constant, which indicated that the neural network training ended, and
the weights reached the optimal results. These weights of the neural
network of controlled object remained unchanged in the subsequent
multiple neural network control process.
Figures 7 and 8 show the active control results of the multiple

neural network controller using fuel valve as actuator. The starting
times of control were 0.5 and 1.0 s corresponding to the transition and
saturation stages of oscillating pressure as shown in Fig. 2, so as to
investigate the ability of this controller to suppress the oscillating
combustion at different stages. The normalized pressure, controller
output, and the weights evolution of the hidden layer of the neural
network of controller are shown in Figs. 7a–7d, respectively. Those
of the output layer are shown in Figs. 8a–8d. It can be seen that the
evolution of system pressure before control was consistent with that

Fig. 4 Neural network structures of a) controlled object and b) controller.
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in Fig. 2a. When the control started, the pressure oscillation ampli-
tude gradually attenuated until the oscillation disappeared, and no
overshoot occurred during the whole process. The controller output
changed abruptly, and it decreased with the decrease of the pressure
oscillation amplitude. The weights of the hidden and output layers of
the neural network of controller changed gradually in each time step,
and reached the final optimal value when oscillation disappeared.
By comparing Figs. 7 and 8, the controller output in the saturation

stage was significantly higher than that in the transition stage at the
beginning of control, and the step values of the controller output were
0.1 and 0.03, respectively. The final weights of the hidden and output
layers of the neural network of controller were slightly lower than
those of the transition stage, which were 0.697 and 0.684 compared

with 0.699 and 0.697. This indicated that the weights of the neural
network of controller updated faster in a single time step when the
system oscillationwas in the saturation stage. The time intervals from
the start of control to the cancellation of oscillation were similar, 0.32
and 0.29 s, respectively.
The training and validation sets for the neural network of con-

trolled object using loudspeaker are shown in Fig. 9. Due to the
obvious differences in the governing equationswhen the fuel valve or
loudspeaker is used as actuator, the oscillating pressures caused by
the same controller output are significantly different. Compared to
Fig. 5, the pressure amplitude was magnified at first, then decreased
under the effects of the flat-band output signal taken from pseudo-
random number series, and the oscillation amplitude eventually

Fig. 6 Training results of the neural network of controlled object (fuel valve actuator). a) Training results; b) validation results; c) loss function.

Fig. 5 Training and validation sets of the neural network of controlled object (fuel valve actuator). a) Controller output for training; b) normalized
pressure for training; c) controller output for validation; d) normalized pressure for validation.
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maintained within�0.15. Under the effects of the step output signal,
the pressure did not oscillate dramatically in the initial stage, but

presented periodic oscillation with amplitude of �0.03.
Figure 10 shows the training results of the neural network of

controlled object. The predicted data from the neural network were

highly consistent with the data of the training and validation sets.

When the number of training cycles reached 53, the system loss

function had the lowest value, indicating that the system training

process was over.

Figures 11 and 12 show the active control results of the multiple

neural network controller using loudspeaker. In the transition stage,

the pressure amplitude first went through a small short-term oscil-

lation when the control started, and then gradually attenuated. The

oscillation disappeared at 0.59 s without overshoot in the whole

Fig. 7 Active control results (fuel valve actuator/transition stage). a) Normalized pressure; b) controller output; c) hidden layer weights in the neural
network of controller; d) output layer weights in the neural network of controller.

Fig. 8 Active control results (fuel valve actuator/saturation stage). a) Normalized pressure; b) controller output; c) hidden layer weights in the neural
network of controller; d) output layer weights in the neural network of controller.

Fig. 9 Training and validation sets of the neural network of controlled object (loudspeaker actuator). a) Controller output for training; b) normalized
pressure for training; c) controller output for validation; d) normalized pressure for validation.
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process. The controller output changed abruptly when the control

started, and decreased with the decrease of the pressure oscillation

amplitude. The weights of the hidden and output layers of the neural

network of controller changed gradually in each time step, and

reached the final optimal value when the oscillation disappeared. In

the saturation stage, the pressure amplitude exceeded the saturation

amplitude by 5%when the control started, and then gradually attenu-

ated until the oscillation disappeared at 1.27 s. The characteristics of

the weights evolution were similar to those in the transition stage.
By comparing Figs. 11 and 12 with Figs. 7 and 8, it can be found

that loudspeaker can suppress the pressure oscillation more quickly

than fuel valve in the transition stage. The time intervals from the start

of control to the cancellation of oscillation were 0.09 and 0.32 s,

respectively. In the saturation stage, the time of eliminating pressure

oscillation by loudspeaker and fuel valvewas similar, 0.27 and 0.29 s.

The pressure amplitude using loudspeaker exceeded the saturation
amplitude by 5% in the attenuation process, and the pressure ampli-
tude using fuel valve attenuated smoothly. This was mainly deter-
mined by the different effects of the two actuators on the pressure
governing equation. The pressure generated by the loudspeaker
directly acted on the pressure governing equation [the fourth term
of Eq. (15)], whereas the equivalence ratio fluctuations generated by
the fuel valve affected the pressure through the flame function [the
last term of Eq. (10)], which made the effects of fuel valve on the
pressure oscillation more moderate.

B. Effects of Parameter Migration on the Performance

Due to the complexity of practical controlled object, the exact
mathematical model of the controlled object may be difficult to
obtain. To address this challenge, one can take a simplified model

Fig. 10 Training results of the neural network of controlled object (loudspeaker actuator). a) Training results; b) validation results; c) loss function.

Fig. 11 Active control results (loudspeaker actuator/transition stage). a) Normalized pressure; b) controller output; c) hidden layerweights in the neural
network of controller; d) output layer weights in the neural network of controller.
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of the controlled object for the prototype controller and then actively
control the practical controlled object through parameter migration.
In this study, pretending that the analytical acoustic network model
[Eq. (9)] is not available, the following nonlinear 0D state space
model [53,54] was employed as a surrogate model of the Rijke tube
model system for the prototype controller:

_r1 � α1r1 − βr1r2 cos�δ� � uc (24)

_r2 � α2r2 � βr21 cos�δ� (25)

_δ � θ − β�r21∕r2 − 2r2� sin�δ� (26)

p�t� � r1�t� sin�t� 0.5δ�t�� � r2�t� sin�2t� δ�t�� (27)

α1 � 0.00647 (28)

α2 � −0.021651 (29)

β � 0.221154 (30)

θ � −0.035796 (31)

where r1, r2, and δ are the system state variables, p is the normalized

pressure, and uc is the controller output. The terms of r1r2, r
2
1, and

r21∕r2 and the trigonometric functions reflect the nonlinearity of this

model. This 0D state space model was developed by Kim [52] to
study oscillating combustion in rocket motors by linearizing the
partial differential conservation equations of mass, momentum, and
energy, approximating the extract nonlinear wave equations, apply-
ing Green’s theorem to reduce the nonlinear wave equations to a
systemof nonlinear second-order ordinary differential equations, and
further reducing to the above first-order nonlinear ordinary differ-
ential equations with a time averaging method. However, this model
can only represent the variation process of the oscillating combustion
pressure at the specific location since it ignores viscous forces, heat
transfer, and the spatial distribution of acoustic wave.
Figure 13a shows the evolution of the normalized pressure of the

0D state space model without control. The pressure oscillation went
through the linear growth stage, transition stage, and saturation stage,
and the final pressure oscillation amplitude remained constant as
�0.3. By comparing Figs. 2 and 13a, the 0D state space model with
the effects of nonlinear factors can reproduce the characteristics of
Rijke tube acoustic network model at the measurement position. In
contrast, the oscillation pressure amplitude in the 0D linear growth
model, which ignores the influence of nonlinear factors on oscillating
combustion, increases linearly with time, as shown in Fig. 13b. This
model does not consider the effects of nonlinear process, and the
results are quite different from the Rijke tube acoustic net-
work model.
In the following, the initial weights of the neural network of Rijke

tube controlled object and the neural network of controller is obtained
from the optimal training results of the 0D state space model. The
effects of parameter migration on the performance of multiple neural

Fig. 12 Active control results (loudspeaker actuator/saturation stage). a)Normalizedpressure; b) controller output; c) hidden layerweights in the neural
network of controller; d) output layer weights in the neural network of controller.

Fig. 13 Pressure evolution of a) 0D state space model and b) 0D linear growth model.
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network controller were emphatically investigated. Figure 14 shows

the active control results of the Rijke tube combined with 0D state

space model. The starting time of control was 0.5 s. Under the effects

of the parameter migration, the attenuation process of the system

pressure oscillation was obviously prolonged. Although the starting

time of the control was in the transition stage, the system oscillation

could not be attenuated within this stage, and the oscillation disap-

peared in the saturation stage at 17.8 s. The controller output

increased at first and then decreased. The weights of the hidden

and output layers of the neural network of controller changed gradu-

ally in each time step without mutation, and reached the final optimal

value when the pressure oscillation disappeared. This indicated that

Fig. 15 Effect of parameter migration of 0D linear growth model on the performance (fuel valve actuators/transition stage). a) Normalized pressure;
b) controller output; c) hidden layer weights in the neural network of controller; d) output layer weights in the neural network of controller.

Fig. 14 Effect of parameter migration of 0D state space model on the performance (fuel valve actuators/transition stage). a) Normalized pressure;

b) controller output; c) hidden layer weights in the neural network of controller; d) output layer weights in the neural network of controller.

Fig. 16 Effects of noise on the performance (loudspeaker actuators). a) Normalized pressure in transition stage; b) controller output in transition stage;
c) normalized pressure in saturation stage; d) controller output in saturation stage.
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the parameter migration from the 0D state space model to the Rijke

tube acoustic network could effectively realize the controller design

and suppress the system oscillation.

To verify the importance of similar characteristics between the 0D

model and the Rijke tube model system, the 0D linear growth model

that had significantly different characteristics from the Rijke tube as

shown in Fig. 13b was adopted to carry out the parameter migration

and active control. The results are shown in Fig. 15. It can be seen that

the multiple neural network controller could not effectively suppress

and eliminate the pressure oscillation due to the inconsistency

between the 0D linear growth model and the Rijke tube. The system

pressure had an obvious overshoot process, and finally entered a new

oscillation state. The evolutions of the controller output and the

weights of hidden/output layers of the controller neural network

had great mutation and oscillation, which indicated that the premise

of active control through parameter migration method was to ensure

that the system characteristics of the 0D simplified model and the

Rijke tube were similar.

C. Effects of Noise on the Performance

Considering the effects of sensor measurement noise, actuator

output noise, and system background noise during the active control

Fig. 17 Effects of noise on the performance with parameter migration of 0D state space model (fuel valve actuators/transition stage). a) Normalized
pressure; b) controller output; c) hidden layer weights in the neural network of controller; d) output layer weights in the neural network of controller.

Fig. 18 Effects of delay on active control performance of multiple neural network controller. a–d) Fuel valve as actuator; e–h) loudspeaker as actuator.
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process, we show in Fig. 16 the controller performance under the

effects of 10% white Gaussian noise using loudspeaker in the Rijke

tube acoustic network. The results showed that the multiple neural

network controller could effectively suppress and eliminate the sys-

tem pressure oscillation in the presence of noise, and finally the

pressure oscillation amplitude and the controller output were main-

tained at the noise level, which indicated that this controller was

insensitive to noise. Compared with Figs. 12a and 16c, the overshoot

of system pressure was reduced from 5% without noise to 4.5%

with noise.

Figure 17 shows the effects of noise on the performance using

parameter migration method. The results showed that the pressure

oscillation and the controller output under the effects of noise had

small random fluctuations on the basis of the overall variation trend.

When the oscillation disappeared, the controller output still had small

fluctuations, but the weights of the hidden and output layers of the

neural network of controller always kept smooth and updated, which

indicated that the active control performance was not affected by

noise when parameter migration method was applied, and it could

still effectively suppress and eliminate the pressure oscillation of the

Rijke tube system.

D. Delay Correction of Multiple Neural Network Controller

Considering the delay effect of sensors and actuators during the

active control process, we show in Fig. 18 the performance of

multiple neural network controller considering delay effects. The

total delay of the sensor and actuator was taken to be 30 ms, and the

control starting time was at 1.0 s, corresponding to the saturation

stage in Fig. 2. Using fuel valve as actuator, the pressure oscilla-

tion appeared periodic overshoot, and finally maintained a new

oscillation with greater amplitude. The weights of the hidden and

output layers of the neural network of controller deviated linearly

from the initial value. Using loudspeaker as actuator, the original

saturation amplitude was maintained after a short-term overshoot,

and theweights of the hidden and output layers of the neural network

of controller tended to a new stable value after rapid adjustment. This

indicated that the multiple neural network controller without consid-

ering the delay effects could not suppress the pressure oscillation

when delay existed in the system. Therefore, the delay correction

should be fully considered during the design of controller structure.

The new controller structure considering delay correction in this

study is shown in Fig. 19. Sensor delay module and actuator delay

modulewere added, respectively, according to the delay of sensor and

actuator. Clustered prediction method [16] was adopted to construct

the neural network of controlled object to ensure the accuracy of

long-term forecast. The neural network of controlled object based on

the clustered prediction method adopted three historical data of

system pressure combined with the controller output at the current

time step to make clustered prediction for the system pressure data of

the next three time steps. In each cycle of the control process, the

clustered prediction neural network was iterated with corresponding

epochs according to the relationship between the total delay time and

the sampling interval. Therefore, the delay was compensated by the

iteration of clustered prediction, and the predicted pressure could

Fig. 19 Structure of themultiple neural network controller considering
delay correction.

Fig. 20 Controller performance considering delay correction. a–d) Fuel valve as actuator; e–h) loudspeaker as actuator.
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offset the effects of sensor and actuator delay. When considering
system delay as shown in Fig. 19, the input of the controller neural
network is the long-term predicted value p1, since the existence of
system delay requires the controller model to predict and output the
control quantity in advance to offset the impact of the delay. This
long-term prediction value p1 is a future prediction of the actual
value p0.
Figure 20 shows the controller performance considering delay

correction using fuel valve and loudspeaker as actuator in the Rijke
tube acoustic network. Using fuel valve as actuator, the system
pressure oscillation was rapidly suppressed after the control started,
and finally eliminated. The controller output suddenly changed at the
beginning, and then gradually decreased. The weights of the hidden
and output layers of the neural network of controller changed gradu-
ally in each time step, and reached the optimal value when the
pressure oscillation disappeared. Using loudspeaker as actuator, the
damping process of the systempressure oscillationwas similar to that
of using fuel valve. After a short saturation period, the controller
output gradually decreased, which indicated that the multiple neural
network controller considering delay correction could effectively
suppress the system pressure oscillation.

IV. Conclusions

In this study, a multiple neural network controller was proposed to
suppress the pressure oscillation of the Rijke tube acoustic network
together with the nonlinear flame function. The flame model was
based on the classical n − τ model filtered by a first-order low-pass
filter. The nonlinear flame function was achieved by using a gain
function saturated with velocity perturbation. Two independent
actuators of fuel valve and loudspeaker were adopted. This multiple
neural network controller consisted of three modules including two
separate neural networks, the neural network of controlled object that
is pretrained before control and the neural network of controller that
is trained in real time during the control process.
The systempressure oscillationwithout control can be divided into

three stages: linear growth stage, transition stage, and saturation
stage. Using the flat-band output signal taken from pseudorandom
number series and the step output signal as the training and validation
sets, the neural network of controlled object can well fit the variation
trend of pressure oscillation, and maintain high precision with both
fuel valve and loudspeaker. The weights of the hidden and output
layers of the neural network of controller change gradually in each
time step when the control starts, and reach the optimal value when
oscillation disappears. Thus, the multiple neural network controller
could suppress the pressure oscillation amplitude.
When the exact mathematical model of the controlled object is

difficult to obtain, the parameter migration from the 0D state space
model with similar oscillating characteristics to the Rijke tube acous-
tic network can effectively achieve the prototype controller design
and suppress the system oscillation. But the damping time of the
systemoscillation is in general longer than that of the controller based
on the Rijke tube acoustic network directly. Results further show that
the multiple neural network controller is insensitive to noise, and
delay correction is achieved by adding sensor and actuator delay
modules combined with the clustered prediction method to offset the
effects of system delay and suppress the pressure oscillation.
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