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a b s t r a c t 

For turbulent flames involving intense turbulence-chemistry interaction, quantifying the uncertainty 

originating from the parameters of chemical kinetics and physical models leads to a more rigorous 

assessment of the predictability of simulations. In the present work, a successive dimension reduction 

framework based on the active subspace (AS) method is formulated to efficiently quantify modeling un- 

certainties associated with chemical kinetics, and turbulent combustion model parameters in turbulent 

flame simulations. The approach is demonstrated in simulating a turbulent H 2 /O 2 lifted wall-jet flame. 

The reduction of the high-dimensional kinetic uncertainty space is first achieved through cheap surro- 

gate autoignition tests, and a single active uncertain kinetic variable is identified. Then a one-dimensional 

active subspace of the uncertainty space consisting of such an active kinetic variable and four turbu- 

lent combustion model parameters are further identified using 25 runs of turbulent flame simulations. 

Finally, the probability distribution function (PDF) of the flame lift-off length is characterized through 

Monte Carlo simulations within a cheap response surface that is constructed within the active subspace. 

The components of the active subspace reveal that both chemical kinetics and turbulent mixing are criti- 

cal for the flame stabilization. Further analysis shows that the uncertainty in the turbulent heat diffusion 

could change the dominant reactions between R1 (H + O 2 � O + OH) and R9 (H + O 2 ( + M) � HO 2 ( + M)) 

through varying the local temperature in the flame stabilization zone. In addition, comparisons of the 

PDFs of the flame lift-off length show that the uncertainty induced by chemical kinetics is comparable 

with that induced by turbulent combustion model parameters. The successive dimension reduction of un- 

certain physicochemical parameter space via AS enables efficient uncertainty quantification for turbulent 

flames, meanwhile providing insights into the controlling physiochemical processes. 

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

The simulations of turbulent combustion involve a large num- 

er of model parameters for chemical kinetics, turbulence model 

nd combustion model etc. These parameters can be determined 

rom theoretical derivation, experimental measurement, or even 

mpirical analysis, which inevitably introduce uncertainty into the 

imulations [1 , 2] . Whether the models associated with uncertain- 

ies, i.e. model-form uncertainties and parametric uncertainties, 

an accurately reproduce the existing experiments and further be 

redictive for their applications in situations where experiments 

re difficult or expensive, remains an open question. For exam- 

le, quantification for kinetic uncertainty and model-form uncer- 
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ainty in turbulent flame simulations, particularly in the context of 

he flamelet-based large eddy simulations, has been addressed by 

ueller et al. [3–5] . The present study focuses on quantifying the 

ncertainty originating from the large number of parameters in ki- 

etics, turbulence and combustion models, which would lead to a 

ore rigorous assessment of the predictability of simulations. In 

ddition, it is important to develop analysis methods to gain in- 

ights into the governing physiochemical processes for optimiza- 

ion of practical combustion devices. 

The forward propagation of parametric uncertainties to simu- 

ation results is one of the central steps towards addressing the 

bove question. A classical method to conduct the uncertainty 

uantification (UQ) for combustion simulations is Monte Carlo 

MC) that uses a large number of samples drawn from the distribu- 

ion of the uncertain parameters. Each sample corresponds to a set 

f model parameters, and for each sample the combustion prob- 

em is evaluated once. Then the uncertainty in simulation results 
. 

https://doi.org/10.1016/j.combustflame.2020.09.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2020.09.015&domain=pdf
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an be quantified through the statistics of the predictions from 

ll of the samples. Due to slow convergence of MC, to make the 

ncertainty quantification be efficient, various response surface 

echniques have been developed to propagate the kinetics-induced 

ncertainty in, for example, one-dimensional laminar flame sim- 

lations [6–10] and homogeneous reactor simulations [11–13] . A 

on-intrusive method is adopted in most of these works while 

he intrusive method has also been studied [12] . Wang et al. 

1] comprehensively reviewed the response surface applications in 

ombustion simulations. The response surface techniques mainly 

nclude sensitivity analysis based method [14] , artificial neu- 

al networks [15] , polynomial chaos expansions [6 , 16] , and high 

imensional model representations [17] , among which the lat- 

er two additionally give global sensitivity information, provid- 

ng physics insight into the models. However, for quantification of 

odeling uncertainties in turbulent flames involving a large num- 

er of model parameters, response surface methods alone remain 

ntractable due to not only the ‘curse of dimensionality’ associated 

ith function fitting but also the high computational cost of each 

ndividual simulation. 

Dimension reduction for the uncertainty space is critical to 

ake the construction of the response surface tractable. Local 

ensitivity analysis and screening methods have been employed 

o isolate the important chemical kinetic parameters for con- 

tructing response surfaces [17–20] . Recently, active subspace (AS) 

ethod, as another dimension reduction technique, has attracted 

uch attention in the context of uncertainty quantification. This 

dea was independently proposed by Russi [21] and Constantine 

22] , and Constantine et al. continued to develop it to be the- 

retically well-founded and practical for numerical implementa- 

ion [23] . Instead of identifying a subset of the inputs as impor- 

ant, an active subspace method identifies important directions, 

erms as active subspace , in the input space. Such important di- 

ections are sets of weights that define linear combinations of the 

nputs, terms as active inputs. Subsequently, these active inputs are 

dopted to construct the response surface. For example, Constan- 

ine et al. [24] employed AS to exploit active directions in a seven- 

imensional input space and identified one-dimensional structure 

n the map from seven simulation inputs to the scramjet perfor- 

ance. Thus a single active variable is used to construct the re- 

ponse surface instead of seven parameters, which greatly reduces 

he required simulation runs. 

Since the AS method isolates inputs combinations instead of a 

ew sensitive ones, it leads to more sufficient dimension reduc- 

ion than local sensitivity analysis and screening methods. Though 

he principal components (PCs) in the principal component anal- 

sis (PCA) [25] are also linear combinations of the original vari- 

bles, AS method is different from PCA. The PCA reduces the di- 

ension of datasets through covariance approximation to facilitate 

he interpretation of such sets of data, whereas the AS identifies 

irections along which a quantity of interest (QoI) changes most 

o approximate the QoI as a function of a few active variables and 

hus reduce the dimension of the input space [26] . The growth of 

he required number of samples to compute the active subspace 

s moderate with increasing input dimension, which is logarithmic 

ith a gradient-based algorithm or linear with local linear fitting 

23] . Constantine et al. recently used the AS method to develop 

esign insight [27] and applied the approach on the design of air- 

oil shape [28] and turbomachinery blade [29] , and adopted the 

ethod to quantify the uncertainties in hypersonic flow simula- 

ions [30] . 

For flame simulations, Ji et al. adopted AS to identify one- 

imensional active subspace within the high-dimensional kinetic 

arameter space for efficient uncertainty propagation in both lam- 

nar [31] and turbulent flame simulations [32] . They compared the 

inetic uncertainty active subspaces computed through zero-D au- 
477 
oignition simulations and Cabra H 2 /N 2 lifted flame [33] simula- 

ions and determined that these two sets of simulations share the 

ame one-dimensional active subspace when the dominant physics 

f the QoIs is the same. Vohra et al. [34] also identified a one- 

imensional active subspace for the H 2 /O 2 mechanism using a pro- 

osed active subspace-based iterative strategy. They further ex- 

ended the AS analysis to include uncertainties in the activation 

nergy of the elementary reactions and initial conditions, and a 

ne-dimensional active subspace was also observed, demonstrating 

he enormous potential of the AS method in applications to un- 

ertainty propagation in complex combustion simulation systems. 

owever, the AS method, so far, has only been applied to reduce 

he kinetic uncertainty space. Its application for turbulent flames 

ith heterogeneous uncertainty parameters e.g., both chemical ki- 

etic and physical uncertainties, have not been reported due to the 

igh computational cost to sample the whole physiochemical un- 

ertain parameter space. 

In this work, a framework that successively reduces the dimen- 

ion of physiochemical uncertainty space through the AS method 

s proposed for efficient quantification of modeling uncertainties 

n turbulent flame simulations. A few active directions in the high- 

imensional kinetic uncertainty space are first identified via AS 

hrough the cheap surrogate zero/one-D simulations. Then the ac- 

ive subspace of the uncertain parameter space consisting of such 

 few active kinetic parameters and physical model parameters 

s further identified, followed by the quantification of modeling 

ncertainties for the predicted flame characteristics. Compare to 

he UQ only for the kinetic parameters, the proposed method ex- 

ends UQ analysis to include physical parameters and thus enables 

he quantitative assessment of relative importance among different 

arts of turbulent combustion modelling. The proposed framework 

an be applied to quantifying the uncertainties originating from 

odel parameters. For the structural uncertainties associated with 

he form of various component models, the current framework is 

ot applicable. The framework is demonstrated with the Burrows–

urkov (B–K) wall-jet flame simulations [35 , 36] , with the impact 

f uncertainties in kinetics and physical model parameters on the 

rediction of flame stabilization being quantified. The controlling 

hysiochemical process for this flame is also analyzed. 

The rest of the article is organized as the following. In 

ection 2 , the active subspace method is recalled briefly, followed 

y the elaboration of the proposed successive dimension reduc- 

ion (SDR) framework. The B-K flame is then described along with 

he characterization of the uncertain physiochemical model param- 

ters. In Section 3 , results on the active subspaces for chemical ki- 

etics alone and for uncertain kinetic-physical parameters of the 

ame simulations are presented. Meanwhile, the controlling phys- 

ochemical processes for the flame stabilization are analyzed, fol- 

owed by quantification of modeling uncertainties. Conclusions are 

n Section 4 . 

. Methodology 

.1. Active subspace methods 

The active subspace method [23] identifies the important di- 

ections along which the QoI varies the most. Let f represent the 

apping from the uncertain inputs x of dimension m to a QoI. For 

xample, in the context of homogenous autoignition simulations, 

he inputs x is a random vector of the uncertain kinetic parameters 

nd the QoI is the ignition delay time. In turbulent flame simula- 

ions, the parameters of various models, e.g. turbulence and com- 

ustion models, along with the kinetic parameters, consist of the 

nputs vector x with a given probability distribution of ρ( x ). The 

orward turbulent combustion simulation is the function f , which 

aps the model parameters to a predicted quantity of interest. 
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Algorithm 2.1 

Compute active subspace with gradients. 

1. Draw M = αβlog (m ) independent samples { x (1) , . . . , x (M) } from the input space 

x ∈ R m according to ρ( x ), α is between 2 and 10. 

2. For each x ( i ) , compute ∇ x f ( x 
( i ) ), where i = 1 , . . . , M. 

3. Approximate 

C ≈ ˆ C = 

1 
M 

M ∑ 

i =1 

∇ x f ( x (i ) ) ∇ x f ( x (i ) ) T , 

where ˆ C is the approximation of C . 

4. Compute the eigendecomposition ˆ C = 

ˆ W ̂

 � ˆ W 

T through singular value 

decomposition (SVD), where the symbol ̂  represents the corresponding 

estimated one. 

5. Separate the eigenvalues and eigenvectors ̂ � = 

[̂ �1 ̂ �2 

]
, ̂ W = 

[̂ W 1 
̂ W 2 

]
, 

where ̂ �1 = diag ( ̂ λ1 , . . . , ̂
 λn ) and ̂ �2 = diag ( ̂ λn +1 , . . . , ̂

 λm ) with ̂  λn �̂ λn +1 , and 
ˆ W 1 contains the first n eigenvectors, i.e. ˆ w 1 , . . . , ˆ w n , and ̂  W 2 contains the 

remain eigenvectors. 

6. Define the active subspace as the range of the vectors in S = 

ˆ W 1 and compute 

the corresponding active variable y = 

ˆ W 

T 
1 x ∈ R n . 
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Algorithm 2.2 

Compute active subspace with global linear regression. 

1. Draw N = αm independent samples { x (1) , . . . , x (N) } from the input 

space x ∈ R m according to ρ( x ). 

2. For i = 1, …, N , run simulations to obtain f = [ f 1 , f 2 , . . . , f N ] 
T . 

3. Estimate b = [ b 1 , . . . , b m ] 
T through ordinary least squares (OLS) regression 

model ̂ b = argmi 
b 

n 1 
2 
‖ c + Xb − f ‖ 2 2 

where X = [ x (1) , . . . , x (N) ] T , ˆ b is the OLS coefficients from linear regression 

of f to x . 

4. Compute the normalized gradient of the linear model ˆ w = ̂

 b / ‖ ̂ b ‖ , and S = ˆ w 

spans the one-dimensional active subspace for f . 

5. Use the 2D sufficient summary plot SSP( f ( x ), ˆ w 

T x ) to validate the 

one-dimensional structure of f ’s x space. 

6. Use bootstrap method [42] to obtain an error bound on ˆ w and plot the 

bootstrap replicates on SSP( f ( x ), ˆ w 

T x ), providing the confidence in validation 

in step (5). 

w  

d

i  

s

s

c

p

i  

w

e

a

l

p

m

r

c  

d

t

f

t

t

t

2

t

p

b

r

t

2  

p

t

t

c

t

p

d

c

c

r

t

s

p

p

The most important directions in the input space can be identi- 

ed by performing an eigenvalue decomposition of the covariance 

atrix of the gradient 

 = ∫ ∇ x f ( x ) ∇ x f ( x ) 
T ρ( x ) d x = W �W 

T , (1) 

here ρ( x ) is the joint probability density function of the inputs 

nd 

 x f ( x ) = 

⎡ ⎢ ⎣ 

∂ f 
∂ x 1 

( x ) 
. . . 

∂ f 
∂ x m 

( x ) 

⎤ ⎥ ⎦ 

. (2) 

Since C is symmetric and positive semidefinite, all the eigenval- 

es are nonnegative and the diagonal matrix � is 

= diag ( λ1 , . . . , λm 

) , λ1 ≥ · · · ≥ λm 

≥ 0 , (3) 

ith the eigenvalues being sorted in descending order. Accordingly, 

he normalized eigenvectors w 1 , . . . , w m 

constitute the m × m or- 

hogonal matrix W . Since the mean-squared directional derivative 

f f with respect to the eigenvector w i is equal to the correspond- 

ng eigenvalue, i.e. 
 (∇ x f ( x ) 

T w i 

)2 
ρ( x ) d x = λi , i = 1 , . . . , m, (4) 

he eigenvalue represents how much f changes when disturbing x 

long the direction of the corresponding eigenvector. Therefore, if 

here is a large gap between n th and ( n + 1)th eigenvalues, i.e.

n � λn +1 where λn is the n th eigenvalue, the corresponding first 

 eigenvectors are the most influential directions and the remain- 

ng m − n eigenvectors can be safely ignored. The active subspace is 

he space spanned by the first n eigenvectors S = [ w 1 , . . . , w n ] . 

If the gradient information is ready in the simulations, as is 

he case for zero-D autoignition tests [37] , the active subspace can 

e estimated through the random sampling approach following 

q. (1) , with M = αβlog (m ) samples, where β is the number of

igenvalues to approximate and α is an oversampling factor. With 

he M evaluations of the gradient, a set of eigenvalues and eigen- 

ectors as well as the subsequent active subspace are obtained via 

he procedure in Algorithm 2.1 . 

If the gradient of the QoI with respect to the input param- 

ters is not accessible, which is quite common for complicated 

nd expensive simulations, e.g. turbulent combustion simulations, 

 one-dimensional active subspace can be explored by assuming 

 x f ( x ) ≈ b . Thus f ( x ) follows a global linear regression model, i.e.,

f (x ) ≈ c + b 

T x , which has been the case for many engineering QoIs

24 , 32 , 34 , 38–40] . In this situation, the eigenvalue decomposition of
ˆ 
 is 

ˆ 
 = ∫ b b 

T ρ( x ) d x = b b 

T = ˆ w ̂

 λ ˆ w 

T , (5) 
478 
here ̂  λ = ‖ b ‖ 2 , ˆ w = b / ‖ b ‖ and the active direction ˆ w is a one-

imensional subspace, identifying one important direction in the 

nput space. The assumption of the global linear model for f ( x ) re-

pect to the inputs can be validated by the univariate trend in a 

ufficient summary plot which was developed by Cook [41] in the 

ontext of regression graphics. Specifically, the sufficient summary 

lot is a scatter plot of QoI against the linear combination of the 

nputs, i.e. the active variable ˆ w 

T x , which is denoted by SSP( f ( x ),

ˆ  T x ). The error of the computed components of the vector ˆ w is 

stimated by using a bootstrap method [42] . The procedure of the 

ctive subspace computation with global linear regression is out- 

ined as Algorithm 2.2 . 

Once the active subspace is identified, the function f can be ap- 

roximated in the low dimensional subspace. Recall that f varies 

ostly within the active subspace and is almost constant in the 

emain inactive directions, a function g of the active variables S T x 

an be constructed to approximate f , i.e. f ( x ) ≈ g ( S T x ). The low-

imensional response surface from the uncertainty input space 

o the QoI enables the uncertainty propagation and quantification 

or the expensive turbulent combustion simulations. At the same 

ime, the components of the active directions are the global sensi- 

ivities with directions [43] , providing the insight information for 

he turbulent combustion. 

.2. Successive reduction of uncertain physicochemical parameters 

In turbulent flame simulations with detailed chemical kinetics, 

he modeling uncertainty could be from not only kinetics but also 

hysical model parameters such as those for turbulence and com- 

ustion models. For such a large number of uncertain inputs, the 

equired number of samples to compute the active subspace is in 

he order of hundreds or even thousands with Algorithm 2.1 or 

.2 . Clearly, it is too expensive to run such a large number of ex-

ensive turbulent flame simulations for a UQ analysis. In this sec- 

ion, a successive dimension reduction (SDR) framework based on 

he active subspace method is formulated by taking advantage of 

heap surrogate simulations for the chemical kinetics employed in 

he turbulent flame simulations. 

Previous works [31 , 34] have demonstrated that the kinetic 

arameters of hydrocarbon mechanism in general have low- 

imensional active subspaces for a wide range of thermochemi- 

al conditions. Moreover, Ji et al. [32] recently showed that for 

hemical kinetics, the active subspace computed through simple 

epresentative zero/one-D simulations is similar to that computed 

hrough expensive turbulent combustion simulations if the QoIs 

hare the same physical insights. The similarity in the dominant 

hysiochemical process can be analyzed and assured through com- 

utational diagnostic techniques such as budget analysis, chemi- 
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Fig. 1. The schematic of the Burrows–Kurkov combustor with the dashed-line 

showing the computational domain. 

c

[

2

w

d

B

a

t

a

i  

b

a

m

c

l

g

r

[

r

s

0

0

c

m

i

l

l

f  

a

p

t  

s

T

q

t

t

p

B

T

b

2

i

al explosive mode analysis (CEMA) [44] and Lagrangian tracking 

45 , 46] . 

Let ξ = [ ξ1 , . . . , ξm k 
] 
T 

, of dimension m k , be the normalized ki- 

etic parameters, ψ = [ ψ 1 , . . . , ψ m p ] 
T 

, of dimension m p , be the 

ormalized physical parameters. In this study, efficient quantifica- 

ion of modeling uncertainties for turbulent flames is performed 

hrough the following two successive dimension-reductions of un- 

ertain physicochemical parameters. 

Step one: Reduction of the high-dimensional kinetic parameter 

pace 

(i) Extract the representative conditions from the turbulent 

combustion simulations and perform cheap zero/one-D sur- 

rogate simulations at these conditions. Determine the QoI 

in the surrogate simulations to guarantee this QoI share the 

same physical insights as that in the turbulent flame simu- 

lations. 

(ii) Use Algorithm 2.1 to identify the active directions, i.e., 

W ξ, 1 = [ w ξ, 1 , . . . , w ξ, n k 
] , in the kinetic parameter space, for

the QoI determined in step one (i), where n k is the dimen- 

sion of the active subspace. Note that W ξ,1 is of dimension 

m k × n k . 

(iii) Project ξ onto the active subspace spanned by the column- 

vectors in W ξ,1 , i.e. W 

T 
ξ, 1 

ξ, to lump the kinetic parameters to 

a few active kinetic parameters w 

T 
ξ, 1 

ξ, . . . , w 

T 
ξ,n k 

ξ. As a re- 

sult, the m k uncertain kinetic parameters are condensed into 

n k active ones, where m k is dozens to thousands while n k is 

typically one to five for hydrocarbon fuels [31] , leading to a 

substantial dimension reduction of the high-dimensional ki- 

netic parameter space. 

Step two: Reduction of the active kinetic-physical parameter 

pace 

(i) Combine the n k active kinetic parameters, i.e., w 

T 
ξ, 1 

ξ, . . . , 

w 

T 
ξ,n k 

ξ, with the m p physical parameters, i.e., ψ 1 , . . . 

ψ m p , to form the new uncertainty inputs θ = [ w 

T 
ξ, 1 

ξ, . . . , 

w 

T 
ξ,n k 

ξ, ψ 1 , . . . ψ m p ] 
T 

. Note that the dimension of the new 

input space is n k + m p . The required turbulent flame simu- 

lations for computing the active subspace in the new input 

space is N = α( n k + m p ) , instead of α( m k + m p ) due to the

reduction for the large number of the kinetics inputs. 

(ii) Compute the active directions W θ, 1 = [ w θ, 1 , . . . , w θ,n tot 
] for 

the QoI of turbulent combustion simulations. Note that w θ, 1 

is of dimension ( n k + m p ) × n tot , and n tot is the few number 

of active directions. As a result, the effective dimension of 

the input parameter space has been reduced from m k + m p 

to n k + m p , and eventually to n tot after the successive reduc- 

tion. 

(iii) Construct a response surface mapping the inputs to the QoI 

within the successively reduced subspace to enable the oth- 

erwise intractable UQ analysis for the turbulent combustion 

simulations. Meanwhile, the components of active directions 

w θ, 1 , . . . , w θ,n tot 
indicate the relative importance of the in- 

put parameters and the corresponding kinetic-physical pro- 

cesses. 

It is worth mentioning that mechanism reduction, particularly 

or large hydrocarbon fuels, could be carried out as a preliminary 

tep of step one to reduce the computational cost of the active sub- 

pace analysis for the kinetic parameters. Through mechanism re- 

uction, the number of involved reactions for UQ analysis can be 

educed by eliminating unimportant reactions. Note that mecha- 

ism reduction is different from the AS dimension reduction. For 

S, the full set of reactions are maintained and the inactive sub- 

pace is removed by identifying directions along which the QoI 
479 
hanges most and thus reducing the dimension of the input space 

23] . 

.3. Demonstration case: Burrows–Kurkov H 2 /O 2 wall-jet flame 

The Burrows–Kurkov (B–K) wall-jet flame [35 , 36] is simulated 

ith uncertainty associated with kinetics and physical models, to 

emonstrate the proposed SDR framework. The schematic of the 

-K combustor is illustrated in Fig. 1 . The high-temperature viti- 

ted air flows through a wind tunnel into a stepped-wall combus- 

or, while the hydrogen is injected from a slot vertical to the tunnel 

nd then flows parallel into the vitiated airstream. The two inflow- 

ng streams, as listed in Table 1 , mix with each other in the com-

ustor, and ignition occurs downstream near the wall resulting in 

 wall-jet flame. 

All the simulations are performed over a 2D computational do- 

ain (the dashed-line region in Fig. 1 ) with a compressible multi- 

omponent solver within the OpenFOAM platform [47] . The simu- 

ation details including the physical models, numerical settings and 

rid independence are presented in Appendix A and are summa- 

ized in Table 2 . The detailed mechanism employed is the Li-2004 

48] mechanism, which consists of 9 species and 21 elementary 

eactions. 

The simulation results are validated against experimental mea- 

urement. As shown in Fig. 2 a, the flame is stabilized at around 

.17 m downstream of the fuel inlet, which is in the range of 0.15–

.2 m obtained from ultraviolet imaging [36] . Together with the 

ontour plot, the profiles of the heat release rate (HRR) and OH 

ass fraction along the upper lip-line of the fuel inlet are shown 

n Fig. 2 b. The location of the HRR peak captures the flame stabi- 

ization location better than that of the OH peak. Hence, a flame 

ift-off length, denoted by L , is defined by the distance from the 

uel inlet to the location of the HRR peak. As shown, L is 0.174 m

ccording to the definition. In addition, as shown in Fig. 2 c, the 

redicted species profiles at the combustor exit agree well with 

he experimental ones, even though for Y < 0.015 m species H 2 O is

lightly over-predicted, and species H 2 is slightly under-predicted. 

he validation indicates that the model strategy adopted is ade- 

uate for the following uncertainty analysis. 

In this study, the lift-off length is selected as the quantity of in- 

erest to demonstrate the proposed method for uncertainty quan- 

ification, since flame stabilization is of primary importance in 

ractice. Moreover, the flame lift-off length is measured in the 

urrows–Kurkov experiment together with an uncertainty range. 

his will facilitate the validation of the underlying turbulent com- 

ustion models. 

.4. Characterization of model uncertainties 

For the r th reaction in Li mechanism [48] , the rate-constant k r 
s assumed to follow the Arrhenius rate law as a function of tem- 
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Table 1 

The inflowing conditions for the Burrow–Kurkov experiments. 

Parameter Ma T (K) P (Pa) Y O2 Y N2 Y H2O Y H2 

Air stream 2.4 1260 101,325 0.258 0.486 0.256 0.0 

Hydrogen stream 1.0 254 101,325 0.0 0.0 0.0 1.0 

Table 2 

The simulation settings for the Burrows–Kurkov flame. 

Solver Unsteady compressible reactive flow solver 

Turbulence model Standard k- ε model with C μ = 0 . 09 , C ε1 = 1 . 44 , C ε2 = 1 . 92 , C ε3 = −0 . 33 , αk = 1 . 0 , and αε = 0 . 769 

Turbulence combustion model Partially stirred reactor (PaSR) with τmix = k/ (ε c f low ), c f low = 4 .0 

Turbulent transport Sc t = 0.6, Pr t = 0.9 

Wall treatment The law of the wall u + = 

1 
A 

ln ( y + ) + B with A = 0 . 4187 , B = 5 . 45 

Table 3 

The uncertainty factors for elementary reactions in the Li mechanism. 

# Reaction F r 

R1 H + O 2 ↼ ⇁ 

O + OH 1.5 

R2 O + H 2 ↼ ⇁ 

H + OH 1.3 

R3 H 2 + OH 

↼ ⇁ 

H 2 O + H 2 

R4 O + H 2 O 

↼ ⇁ 

OH + OH 1.5 

R5 H 2 + M 

↼ ⇁ 

H + H + M 2 

R6 O + O + M 

↼ ⇁ 

O 2 + M 2 

R7 O + H + M 

↼ ⇁ 

OH + M 3 

R8 H + OH + M 

↼ ⇁ 

H 2 O + M 2 

R9 H + O 2 ( + M) ↼ ⇁ 

HO 2 ( + M) 1.2 

R10 HO 2 + H 

↼ ⇁ 

H 2 + O 2 2 

R11 HO 2 + H 

↼ ⇁ 

OH + OH 3 

R12 HO 2 + O 

↼ ⇁ 

O 2 + OH 1.2 

R13 HO 2 + OH 

↼ ⇁ 

H 2 O + O 2 3 

R14 HO 2 + HO 2 ↼ ⇁ 

H 2 O 2 + O 2 2.5 

R15 HO 2 + HO 2 ↼ ⇁ 

H 2 O 2 + O 2 1.4 

R16 H 2 O 2 ( + M) ↼ ⇁ 

OH + OH ( + M) 2.5 

R17 H 2 O 2 + H 

↼ ⇁ 

H 2 O + OH 3 

R18 H 2 O 2 + H 

↼ ⇁ 

HO 2 + H 2 2 

R19 H 2 O 2 + O 

↼ ⇁ 

OH + HO 2 3 

R20 H 2 O 2 + OH 

↼ ⇁ 

HO 2 + H 2 O 2 

R21 H 2 O 2 + OH 

↼ ⇁ 

HO 2 + H 2 O 2 
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erature 

 r ( T ) = A r T 
n r exp 

(
−E a,r 

RT 

)
, r = 1 , . . . , 21 , (6) 

here A r is the pre-exponent, n r is the temperature exponent, E a, r 

s the activation energy. This expression can be interpreted in a 
L

Temperature (K)(a)

(b)
HRR

OH

ig. 2. (a) The contour plot of the temperature where L denotes the lift-off length, (b) the

nlet, and (c) the profiles of species mole fractions at the combustor exit with the experim

480 
ogarithmic form 

n k r = ln A r + n r ln T − E a,r 

RT 
. (7) 

Following the previous work [6 , 9 , 10 , 31 , 32 , 49] , the rate-

onstants are uncertain. Specifically, the ln k r ’s of all the reac- 

ions are independent of each other and normally distributed, 

.e., ln k r ∼ N ( μ, σ 2 ) , where μ is the mean value and σ is the 

tandard deviation. In this work, the mean of ln k r is the corre- 

ponding nominal value ln k r 0 and the standard deviation is set 

o be 1 
3 ln F r , where F r is the temperature-independent uncer- 

ainty factor adopted from Konnov [50] . The F r ’s are summarized in 

able 3 for all the reactions. Each ln k r can be centered by the 

ean and normalized by the standard deviation as ξ r , which fol- 

ows the standard normal distribution, i.e., 

r = 

ln k r / k r0 

1 
3 

ln F r 
∼ N ( 0 , 1 ) , r = 1 , . . . , 21 . (8) 

Hence, the number of the uncertain kinetic parameters is 21 

nd the uncertainty inputs can be represented by a 21-dimensional 

andom vector ξ = [ ξ1 , . . . , ξ21 ] 
T ∼ N (0 , I 21 ) . 

For the turbulence and combustion models, the k- ε turbulence 

odel parameter C ε1 , the PaSR combustion model parameter c flow 

, 

urbulent Schmidt number Sc t and Prandtl number Pr t are consid- 

red to be uncertain to represent the significance of turbulence, 

ombustion, turbulent mixing modeling, respectively. The ranges 

rom these parameters are compiled based on the reported val- 

es in literature. The uncertainty characterization of the four phys- 

cal model parameters are summarized in Table 4 , with uniform 
(c)

 profiles of the HRR and OH mole fraction along the upper lip-line of the hydrogen 

ental data. 
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Table 4 

Uncertainty characterization of turbulence and combustion model parameters. 

Parameter Nominal Min Max 

C ɛ 1 1.44 1.3 1.7 

c flow 4.0 0.5 4.0 

Sc t 0.6 0.5 1.0 

Pr t 0.9 0.5 1.0 
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Fig. 3. The profiles of species mass fraction and temperature over the upper lip- 

line (the dashed line in the contour plot), and the vertical dotted line is the location 

where the representative condition is extracted. 
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istribution on their spaces bounded by the range following the 

aximum entropy principle from Jaynes [51] . The turbulence 

odel constants C ɛ 1 in general has strong impact on jet spreading 

52] . In addition, C ɛ 1 was introduced to account for the pressure 

iffusion and effect of the near-wall anisotropy that may be signif- 

cant in the wall-jet flame. For PaSR combustion model, the model 

onstant c flow 

has an impact on the mean chemical reaction rate 

nd treated as an uncertain parameter with the range of 0.5–4.0 

o account for the effects of finite rate chemistry. The parameters 

c t and Pr t in general have profound influence on the predicted 

ame characteristics through affecting turbulent mass or thermal 

iffusion [53 , 54] and a range of 0.5–1.0 is chosen according to the

iterature investigation. It is worth to mention that the input pa- 

ameters are centered at zero and normalized to be over [ −1 , 1 ] 

n the subsequent active subspace analysis, and 〈 C ɛ 1 〉 , 〈 c flow 

〉 , 〈 Sc t 〉 ,
 Pr t 〉 are used to denote the corresponding normalized value. 

. Results and discussions 

For the UQ analysis of expensive turbulent combustion simula- 

ions with high-dimensional uncertainty space, the aim is to prop- 

gate uncertainties in the following modeling parameters to the 

ame lift-off length L in the B-K simulations: (i) rate-constants k i 
′ s 

or the chemical kinetics, and (ii) turbulence Schmidt number Sc t , 

urbulence Prandtl number Pr t , turbulence model constant C ɛ 1 and 

ombustion model parameter c flow 

for the physical models. The di- 

ension of the uncertainty space is reduced within the proposed 

DR framework to enable the otherwise intractable UQ. In this sec- 

ion, the results from implementing this heuristic approach in the 

-K simulations will be demonstrated. 

.1. Active subspace of chemical kinetics and key reactions 

.1.1. Active subspace from surrogate zero-D autoignition tests 

According to step one of the SDR framework, the active sub- 

pace of the kinetic uncertainty space is first computed through 

heap surrogate simulations at the representative conditions. Pre- 

ious analysis [55] showed that for the Burrows–Kurkov flame, a 

hemical explosive mode exists at the flame onset location, and 

he dominant physiochemical process for flame stabilization is au- 

oignition. Hence, zero-D autoignition tests are chosen as the sur- 

ogate simulations. The representative condition is extracted from 

 critical location upstream where the ignition occurs. The criti- 

al location is defined as where the mass fraction of H 2 O starts 

o be significantly larger than that of O 2 , and recall that these 

wo species have the almost same mass fraction in the vitiated 

ir stream. To capture this location, the profiles of species mass 

raction and temperature are plotted over the upper lip-line of the 

uel inlet, as shown in Fig. 3 from which the representative con- 

ition is obtained, that species mass fractions are Y H2 = 0.0191, 

 O2 = 0.245, Y H2O = 0.245 and Y N2 = 0.475, and temperature is 

56 K and pressure is 100,523 Pa. The adiabatic, isobaric autoigni- 

ion tests under the representative condition as the initial state are 

erformed based on Cantera [56] . 

The active subspace is computed using Algorithm 2.1 through 

 = 670 random samples drawn for the normalized rate-constants 
481 
 ξ1 , . . . , ξ21 } according to their distribution densities. The eigen- 

alues of the covariance matrix of the gradient of ignition delay 

ime (IDT) with respect to θ are plotted in Fig. 4 a, showing that 

he first eigenvalue is larger than the second one by one order 

f magnitude, implying that the kinetics input space has a one- 

imensional active subspace. To confirm this, the summary plot 

f log(IDT) versus w 

T 
ξ, 1 

ξ is shown in Fig. 4 b, where w ξ, 1 is the

rst eigenvector corresponding to the largest eigenvalue. As illus- 

rated, the values of log(IDT) approximately distribute on a one- 

imensional curve and the width of the curve is small, confirm- 

ng the one-dimensional structure of the kinetic uncertainty space. 

herefore, it is sufficient to choose the first eigenvector, i.e. w ξ, 1 to 

pan the one-dimensional active subspace for kinetic parameters. 

A response surface is constructed in the active subspace by the 

econd order polynomial fitting, as shown in Fig 4 b. The proba- 

ility distribution function (PDF) of the log(IDT) is subsequently 

valuated via the response surface, as shown by the solid line in 

ig. 4 c. Meanwhile, a deterministic solution for the distribution of 

he log(IDT) is available by directly evaluating each sample via au- 

oignition integration, as shown by the dashed line in Fig. 4 c. As 

llustrated, the results from the AS method agree well with the ac- 

urate ones with the differences in the mean and standard devi- 

tion being less than 1%, demonstrating the effectivity of the AS 

ethod and the adequacy of the one-dimensional active direction 

 ξ, 1 . 

The components of w ξ, 1 are shown in Fig. 5 , providing the rel- 

tive importance of the reactions. As shown, the most sensitive re- 

ction is R1 (H + O 2 ↼ ⇁ 

O + OH), which is the major chain branching

eaction. This is consistent with the findings in the work of Wu 

t al. [47] that the evolutions of the OH and H radicals dominate 

he chemical explosive mixing layers ahead of the flame stabiliza- 

ion location. The secondary sensitive reaction is R9 (H + O 2 ( + M)

 

 

HO 2 ( + M)) which is the main competition reaction to R1 in 

onsuming H, and no surprise it has an opposite sign to R1 and 

etards autoignition process. 

The active subspace is also estimated with Algorithm 2.2 to 

onfirm that it is adequate to use linear regression to compute the 

ctive subspace, since it is computationally intractable to evaluate 

he gradient of the flame lift-off length L through the B-K simu- 

ations and Algorithm 2.2 will be employed at this situation. The 

ame set of samples is used to perform the calculation, and the 

ctive subspace is shown in Fig. 5 with the triangle which is in per-

ect consistency with that estimated based on gradient. Moreover, 

he overlap between the two corresponding SSPs(log(IDT), w 

T 
ξ, 1 

ξ) 
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Fig. 4. (a) The eigenvalues of the covariance matrix of the gradient of IDT with 

respect to ξ, (b) the summary plot of log(IDT) versus w 

T 
ξ, 1 

ξ from the gradient-based 

algorithm and linear regression, and (c) the PDFs of log(IDT). 

Fig. 6. The summary plot of flame lift-off length L versus w 

T 
ξ, 1 

ξ through B-K simu- 

lations; the overlapping grey dots are from 100 bootstrap replicates of SSP( L , w 

T 
ξ, 1 

ξ); 

the dashed line is the fitted response surface by using second order ployfit. 
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Fig. 5. The components of the active subspace computed based on gradient, linear regres

obtained through B-K simulations. 

482 
hown in Fig. 4 b demonstrates that the one-dimensional active 

ubspaces computed by both algorithm variants coincide. 

.1.2. Assessment of active subspace with flame simulations 

To assess the capacity of the surrogate simulations in comput- 

ng active subspace for kinetics, the subspace is also computed 

sing 50 B-K simulation samples to draw the comparison. The 

ne-dimensional active direction for the flame lift-off length L 

omputed with Algorithm 2.2 is shown in Fig. 5 with the errors 

stimated by bootstrap. The corresponding summary plot is dis- 

layed in Fig. 6 which shows a strong univariate trend in the func- 

ion of L versus w 

T 
ξ, 1 

ξ with a narrow scatter of the 50 simples. This 

onfirms that the kinetic uncertainty space has a one-dimensional 

ctive subspace for the QoI, which is consistent with the analysis 

y using the surrogate simulations. 

The comparison between the active subspaces for the IDT in the 

utoignition simulations and the flame lift-off length L in the B-K 

imulations is shown in Fig. 5 . As shown, these two sets of com- 

onents are consistent in general. Significant differences can only 

e observed for the chain propagating reaction (R3). The sensitiv- 

ty analysis in Li et al. [48] demonstrated that the laminar flame 

peed is sensitive to this reaction, while the ignition delay time is 
sion through autoignition simulations for the kinetics inputs, compared with those 
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Fig. 7. The components of the active subspace w θ computed with and without 

the SDR framework, with the error bars estimated by bootstrap, also shown is the 

equivalent active rate-constant ˜ R ′ . 
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ssentially insensitive to R3 at all conditions. This may explain the 

ignificantly promoted sensitivity of L to R3 in the B-K simulation, 

n which rather than a pure autoignition process, the species diffu- 

ion ahead of the flame stabilization zone elevates the reactivity of 

3 and moves the lifted flame towards upstream. The sensitivity to 

he reaction R11 is slightly promoted for the same reason and the 

ensitivity to the reaction R1 is inhibited. Nevertheless, the active 

ubspace estimated through the surrogate autoignition simulations 

s reasonably coincident with that computed through the B-K sim- 

lations with an inner product of 0.967. Therefore, the zero-D au- 

oignition simulations have the ability to surrogate the expensive 

-K simulations to identify the active subspace of the kinetic un- 

ertainty space, which would significantly reduce the number of 

equired runs in the subsequent active subspace analysis for the B- 

 flame involving both kinetic and physical uncertain parameters. 

Following step one (iii) of the SDR framework, with the one- 

imensional active subspace demonstrated by the surrogate sim- 

lations, an active variable is obtained by projecting the 21 rate- 

onstants ξ = [ ξ1 , . . . , ξ21 ] 
T 

onto the active direction, i.e. w 

T 
ξ, 1 

ξ

hich can be treated as an averaged rate-constant weighted by 

he corresponding components of the vector w ξ, 1 . To make this 

ctive variable have a physical meaning that larger value repre- 

ents a higher reaction rate, an active rate-constant, denoted by 
˜ 
 , is defined as −w 

T 
ξ, 1 

ξ, since w ξ, 1 is calculated from IDTs which 

as a negative correlation with the reactivity. Since ξ i has been nor- 

alized to follow the standard normal distribution, ˜ R also follows 

he standard normal distribution, i.e. ˜ R ∼ N ( 0 , 1 ) . This active rate- 

onstant ˜ R will be adopted in the later section to draw random 

amples from the kinetic uncertainty space and to represent the 

ehavior of the kinetics in the B-K flames. 

.2. Dimension reduction for kinetic-physical uncertainty parameters 

.2.1. Active subspace for flame-lift off length 

Lumping the active rate-constant ˜ R and uncertain model pa- 

ameters, i.e. Sc t , Pr t , C ɛ 1 and c flow 

, an input parameter vector rep-

esented by θ = [ ̃  R , 〈 Sc t 〉 , 〈 P r t 〉 , 〈 C ε1 〉 , 〈 c flow 

〉 ] T ∈ R 

5 is constructed. 

ollowing step two of the SDR framework, the active subspace 

f such a kinetic-physical input parameter space for the flame 

ift-off length L is explored with Algorithm 2.2 to further reduce 

he dimension. N = 25 samples with the oversampling factor be- 

ng 5 is drawn from the uncertainty space spanned by θ. The 

-square of the global linear regression is 0.976, suggesting that 

lgorithm 2.2 is adequate to identify the active subspace. The one- 

imension active subspace for L is shown in Fig. 7 with the errors 

stimated by bootstrap. The corresponding SSP( L , w 

T 
θ
θ) is plotted 
483 
n Fig. 8 which shows that the predicted L’ s from the 25 simula- 

ion runs lie close to a one-dimensional curve, confirming a nearly 

ne-dimensional mapping between the linear combination of the 

nputs w 

T 
θ
θ and L . In this situation, the one-dimensional active di- 

ection is sufficient to describe the behavior of the flame lift-off

ength. In addition, the narrow scatter of the bootstrap replicates 

ndicates that 25 samples with the oversampling factor being 5 is 

ufficiently large for the SDR input space spanned by θ. 

As shown in Fig. 7 , L is significantly sensitive to three of the 

ve parameters i.e., ˜ R , S c t , P r t , whereas it is insensitive to C ɛ 1 and

 flow 

. The critical importance of the chemical kinetics is consistent 

ith the findings in a chemical explosive mode analysis for this 

ame [47] that the buildup and evolution of the OH and H radicals 

ominates the chemical explosive mixing layer ahead of the flame 

nitiation. More specifically, due to the monotonous-rise trend in 

he SSP( L , w 

T 
θ
θ), the negative sign of ˜ R component indicates that 

 larger reaction rate shifts the flame towards upstream, which is 

aused by a shorter resident time required for the autoignition of a 

ore reactive mixture. Besides the kinetics, the significant sensitiv- 

ty of L to turbulent transport parameters Pr t and Sc t implies that 

urbulent mixing is also important for flame stabilization. The tur- 

ulence thermal conductivity increases with decreasing Pr t , lead- 

ng to more heat loss and shifting the flame further downstream. 

n the contrary, decrease Sc t enhances the turbulence mass mixing 

or the non-premixed flows, which accelerates the ignition process 

nd, hence moves the flame towards upstream. The small value of 

he C ɛ 1 component provides the evidence that the turbulence eddy 

tself has much less effects on the flame stabilization location than 

he kinetics as well as turbulence thermal and mass diffusivity. The 

omponent corresponding to c flow 

is also relatively small. Figure 9 

hows the streamwise HRR profiles for cases with different c flow 

’s, 

llustrating that the onset of the HRR is almost same for all the 

ases, while the downstream rise and decline become moderate 

ith decreasing c flow 

due to the increasing finite rate chemistry ef- 

ects. The relatively uniform distribution for cases with small c flow 

’s 

s also observed in the contour plots of the intermedium species H. 

herefore, c flow 

has very little impact on the onset of the flame. Be- 

ause L is defined by the location of HRR peak, smaller c flow 

leads 

o a slightly larger L , which is consistent with the negative sign of 

 flow 

component in Fig. 7 . 

.2.2. Assessment of the active rate-constant 

Due to the critical importance of kinetics, the behavior 

f the active rate-constant ˜ R is further assessed through in- 

ependently sampling rate-constants in a direct AS analysis. 

he input space is then spanned by the vector ζ = 

 ξ1 , . . . , ξ21 , 〈 Sc t 〉 , 〈 P r t 〉 , 〈 C ε1 〉 , 〈 c flow 

〉 ] T ∈ R 

25 . With the oversam- 
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Fig. 9. The streamwise HRR profiles along the upper lip-line of fuel inlet, and H 

mass fraction contours for cases with c flow of 1.0, 2.0 and 4.0. 
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ling factor being 2, N = 50 samples are drawn for ζ according to 

he distribution densities. The components of the one-dimensional 

ctive subspace w ζ are estimated with Algorithm 2.2 and shown in 

ig. 10 . The corresponding SSP( L , w 

T 
ζζ) is plotted in Fig. 8 , showing

 reasonable univariate trend and the scatter is small even though 

arger than that of SSP( L , w 

T 
θ
θ) due to a lower oversampling factor.

evertheless, the summary plot SSP( L , w 

T 
ζζ) provide confidence of 

he one-dimensional active subspace w ζ, from which a equivalent 

ctive rate-constant, denoted by ˜ R ′ , can be obtained by computing 

he Euclidean norm of the vector that consists of all the kinetic 

omponents. 

The equivalent ˜ R ′ along with the physical components are plot- 

ed in Fig. 7 to make a comparison. As shown, ˜ R from the SDR 

ramework is consistent with that from direct AS analysis, further 

ndicating that one can use a single active rate-constant instead of 

 large number of individual ones to account for the kinetic un- 

ertainty in the UQ analysis for turbulent combustion simulations. 

t is also interesting to observe that, not only the kinetics is dom- 

nant as shown in Fig. 7 , but the most important reaction R1 has

he roughly same sensitivity as that of the most important turbu- 

ence parameter Pr t as shown in Fig. 10 . This suggests that to im-

rove the confidence of L prediction, reducing the uncertainty in 

1 is as important as reducing the uncertainty associated with tur- 

ulent heat diffusion. In other words, to reduce the uncertainty in 

he prediction and balance the error contributions from the mod- 

ls, the accuracy of the kinetic model, particularly the kinetic pa- 

ameters of key reactions, e.g. R1, R3 and R9, needs substantial im- 

rovement, together with the careful calibration of the turbulent 

ransport parameters. For the turbulence and combustion models 

mployed in this study, the corresponding model parameters has 

egligible influence on the prediction uncertainty and no further 

mprovement is needed. 

.2.3. Effects of physical parameter uncertainties on key reactions 

From Fig. 10 , the effects of the physical uncertainties on the key 

eactions can also be addressed through the comparison of w ζ and 

 ξ, 1 from the B-K simulations. As shown, when the physical pa- 

ameters are uncertain, the sensitivity of L to reaction R1 (H + O 2 

 

 

O + OH) is weaken while R9 (H + O ( + M) ↼ ⇁ 

HO ( + M))
2 2 

484 
nd R11 (HO 2 + H 

↼ ⇁ 

OH + OH) are significantly promoted. This 

s mainly caused by the local temperature change in the reaction 

one due to the uncertainty in Pr t which dominates physical ef- 

ects among the four physical parameters. To confirm this claim 

nd gain a better understanding, the rate-constants of R1 and R9 

s a function of temperature are plotted in Fig. 11 . Note that the 

hain-branching reactions R1 and the chain-propagating reaction 

9 are competitive in consuming H and O 2 . The rate-constant k 1 is 

n a modified Arrhenius form, i.e. k 1 (T ) = A T n exp ( −E a /RT ) , while

 9 is a pressure-dependent falloff reaction and follows the expres- 

ion 

 9 ( T ) = k ∞ 

(
P r 

1 + P r 

)
F ( P r ) , (9) 

here F ( P r ) is the falloff function and estimated by using Troe’s fit- 

ing [57] with F cent , P r = k 0 [M] / k ∞ 

, and [M] = 

∑ 

ε s C s . C s and ɛ s are

he concentration and collision efficiency of species s , respectively. 

ll the parameters are from the Li-2004 mechanism, and the con- 

entrations are from the B-K simulations. 

As shown in Fig. 11 , the curves of k 1 and k 9 intersect at the

emperature of 1082 K, denoted by T critical , below which R1 dom- 

nates the reaction between H and O 2 , whereas when the tem- 

erature goes above T critical , R1 rapidly overtakes R9. The value of 

 critical is also marked in Fig. 3 , from which it can be observed

hat the temperature at the flame stabilization location is around 

 critical . This suggests that uncertainty associated with turbulent 

eat diffusion would induce uncertain local temperature randomly 

istributed around T critical , leading to different dominant reaction 

egimes in the flame stabilization zone. Specifically, when Pr t is as- 

igned with the uncertainty range of [0.5, 1.0] which is the case in 

he present work, rather than the nominal value of 0.9, the local 

emperature is more likely to be below the nominal one, since heat 

iffusion is enhanced with decreasing Pr t . This would subsequently 

ncrease the reaction rate of R9 while decrease that of R1, explain- 

ng when physical uncertainty is taken into account, the formation 

nd consumption of HO 2 reactions are promoted and H 2 /O 2 chain 

eactions are conversely inhibited as shown in Fig. 10 . 

.3. Quantification of modeling uncertainties 

The summary plots of SSP( L , w 

T 
ξ, 1 

ξ) and SSP( L , w 

T 
θ
θ), SSP( L , w 

T 
ζζ)

n Figs. 7 and 9 , respectively, indicate that univariate models are 

easonable choices for propagating the corresponding input un- 

ertainty. Therefore, based on second-order polynomial fitting, the 

esponse surfaces are constructed in the corresponding active sub- 

paces as shown in Fig. 6 for only the kinetic uncertainties con- 

idered and Fig. 12 a for both the kinetic and physical uncertainties 

onsidered, with and without SDR. The R-square values of the fit- 

ing for SSP( L , w 

T 
ξ, 1 

ξ), SSP( L , w 

T 
θ
θ) and SSP( L , w 

T 
ζζ) are 0.994, 0.986

nd 0.982, respectively, confirming that the fitting error of the re- 

ponse surfaces is sufficiently small. Then the propagation of the 

inetic uncertainties is first investigated based on the response sur- 

aces, followed by the propagation of the kinetic-physical uncer- 

ainties. 

.3.1. Propagation of kinetic uncertainties 

Figure 12 b shows the PDFs of L estimated by drawing 10,0 0 0

amples. As shown, when only the kinetic uncertainties are taken 

nto account to build the response surface, the mean of the un- 

ertain L is 0.177 m and the 95% confidence interval is [0.124 m, 

.227 m]. When both the kinetic and physical uncertainties are in- 

luded to construct the response surface, the mean of L is 0.207 

nd 0.216 m with and without SDR, respectively. The 95% con- 

dence interval is [0.152 m, 0.265 m] and [0.152 m, 0.279 m] 

ith and without SDR, respectively. The results show that the two 

ets of kinetic-introduced uncertainty of L are roughly consistent 
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Fig. 10. The components of the B-K flame active subspace for flame lift-off length L with and without the SDR framework, also shown is the kinetics active subspace 

computed through autoignition simulations and B-K simulations. 

Fig. 11. Reaction rate-constants of the reaction R1 and R9 as a function of temper- 

ature. 
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hether or not they employ the SDR, indicating that the kinetic 

ncertainty can be properly propagated within the proposed SDR 

ramework. More interestingly, the comparison between the PDFs 

ith the legends of ‘only kinetics ’ and ‘SDR + AS ’ demonstrates that 

he physical uncertainty effects increase the mean of L while the 

ength of the 95% confidence interval remains the same. This is 
ig. 12. (a) The response surfaces constructed in the active subspaces by fitting SSP( L , w 

T 
θ
θ

f L evaluated based on the response surfaces with 10,0 0 0 samples. 

485 
onsistent with the discussions in Section 3.2 that, the physical un- 

ertainty effects promote the sensitivity to the reaction R9 which 

as a slower reaction rate than R1 and subsequently retard the au- 

oignition process, ultimately resulting in a shift of the flame to- 

ards downstream. 

.3.2. Propagation of coupled physiochemical uncertainties 

Based on the response surfaces in Fig. 12 a, the kinetic and phys- 

cal uncertainties are propagated to L through 10,0 0 0 times inde- 

endently sampling the inputs of θ within the SDR framework and 

with direct AS analysis. The resulting PDFs of L are shown in 

ig. 13 a. The mean of L is 0.209 and 0.217 m with and without SDR,

espectively. The 95% confidence interval of L with SDR is [0.145 m, 

.276 m], which is slightly smaller than that estimated with direct 

S analysis. Nevertheless, the comparison between the two PDFs 

f L indicates that the kinetic and physical parameter uncertainties 

an be properly propagated within the SDR framework, validating 

he proposed SDR framework in the current application. 

Moreover, the PDFs considering only the kinetic uncertainty R̃ 

nd only the physical uncertainties, i.e., Sc t , Pr t , C ɛ 1 and c flow 

are

valuated based on the SDR response surface in Fig. 12 a. As shown 

n Fig. 13 b, these two PDFs are essentially overlapped, indicating 

hat the uncertainty of L introduced by the physical parameter un- 

ertainties, particularly by turbulence mass and heat diffusion as 

iscussed in Section 3.2 , is comparable with that introduced by the 
) within the SDR framework and SSP( L , w 

T 
ζ ζ) in direct AS analysis; and (b) the PDFs 
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Fig. 13. The PDF of the flame lift-off length within the SDR framework along with 

the comparison to (a) the PDF with direct AS analysis and (b) the PDFs separately 

introduced by kinetics and turbulence. 
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inetic uncertainty, even though the kinetics is dominant in L pre- 

iction. This result suggests that in addition to the kinetic uncer- 

ainty, one should also sufficiently consider uncertainty associated 

ith turbulence and combustion models to improve the confidence 

n the prediction of the turbulent flames, even though the domi- 

ant role of the kinetics on the flame lift-off length has been well 

roved in this application. 

. Conclusions 

In this work, a successive dimension reduction (SDR) frame- 

ork based on the active subspace (AS) method is formulated 

o reduce the dimension of the physiochemical uncertainty space 

or modeling uncertainty quantification of turbulent flames. The 

erformance of the SDR framework is demonstrated with the 

urrows–Kurkov (B–K) wall-jet flame simulations which consider 

1 uncertain rate-constants, and four physical uncertainty pa- 

ameters, i.e. Sc t , Pr t , C ɛ 1 and c flow 

. A one-dimensional active 

ubspace and the corresponding single active rate-constant are 

dentified for the 21 rate-constants through the cheap surrogate 

utoignition simulations. The dimension of the reconstructed in- 

ut space including uncertain physical parameters and the active 

ate-constant is reduced to one, enabling efficient UQ of the pre- 

icted flame lift-off length through the response surface built in 

his one-dimensional subspace. In addition, the dimension of the 

ncertainty space is also reduced through direct AS analysis to as- 

ess the SDR framework. 

The active subspaces of the uncertain rate-constants computed 

hough the autoignition tests and B-K simulations are essentially 

he same, indicating the zero-D autoignition tests are able to surro- 

ate the expensive B-K simulations to identify the active subspace 

or the kinetics. The components of the active subspace reveal that 
486 
he chain branching reaction R1 (H + O 2 ↼ ⇁ 

O + OH) dominates the 

gnition delay time as well as the flame lift-off length. Further 

omparison between the active rate-constant and the equivalent 

ne from the B-K simulations, confirms the ability of the active 

ate-constant in propagating the kinetic uncertainties when the 

hysical uncertainties are also considered. From the comparison 

etween the PDFs from the SDR framework and direct AS analysis, 

t is concluded that the SDR framework can reproduce the proba- 

ility distribution of the predicted flame lift-off length driven from 

inetic and physical parameter uncertainties. 

The physical uncertainties, particularly the uncertainty associ- 

ted with turbulent heat diffusion, is found to have impact on 

he kinetic uncertainties propagation through promoting the re- 

ctions of formation and consumption of HO 2 , particularly reac- 

ions R9 (H + O 2 ( + M) ↼ ⇁ 

HO 2 ( + M)) and R11 (HO 2 + H 

↼ ⇁ 

OH + OH),

nd weaken the H 2 /O 2 chain reactions, mainly R1. The uncertainty 

n the turbulent heat diffusion introduces the variation of the lo- 

al temperature in the flame stabilization zone and subsequently 

hanges the dominant reaction between the competitive reactions 

1 and R9. A more prevalent role of R9 retards the autoignition 

nd leads to a larger mean of the flame lift-off length than that 

ithout the physical uncertainty. 

The components of the active subspace reveal that chemical ki- 

etics plays a dominant role for the flame stabilization location, 

ollowed by turbulent transport parameters Pr t and Sc t , whereas 

he turbulence and combustion model parameters C ɛ 1 and c flow 

ave negligible impact on L . The PDFs of L further show that the 

ncertainty induced by chemical kinetics is comparable with that 

nduced by the overall physical models. Both chemical kinetics and 

urbulent mixing are essential for the flame initiation in the B-K 

ame. Note that current work considers only the uncertainties in 

odel parameters, future work may include the quantification of 

odel-form uncertainty. 
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ppendix A. Governing equations and numerical details of 

urrows–Kurkov flame simulations 

The computational model solves the Reynolds averaged Naiver- 

tokes equations for compressible reacting flows. The total fluid 

ensity equation, continuity equation for species m , momentum 

quation and energy equation are 

∂ ρ̄

∂t 
+ 

∂ ρ̄ ˜ u j 

∂ x j 
= 0 , (A1) 

https://doi.org/10.13039/501100001809
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∂ ρ̄ ˜ Y s 

∂t 
+ 

∂ ρ̄ ˜ Y s ̃  u j 

∂ x j 
= 

∂ 

∂ x j 

(
ρ̄D s 

∂ ̃  Y s 

∂ x j 
+ τ̄ t 

˜ ∅ 

)
+ ˙ ω s , s = 1 , 2 , . . . , ns − 1 ,

(A2) 

∂ ρ̄ ˜ u i 

∂t 
+ 

∂ ρ̄ ˜ u i ̃  u j 

∂ x j 
= − ∂ p̄ 

∂ x i 
+ 

∂ 

∂ x j 

(
τ̄i j + τ̄ t 

i j 

)
, i = 1 , 2 , 3 , (A3) 

nd 

∂ ρ̄ ˜ E 

∂t 
+ 

∂ ρ̄ ˜ H ̃

 u j 

∂ x j 
= 

∂ 

∂ x j 

[ 

κ
∂ ̃  T 

∂ x j 
+ 

ns ∑ 

s =1 

(
ρ̄D s ̃

 h s 
∂ ̃  Y s 

∂ x j 

)
+ 

˜ u i ̄τi j + τ̄ t 
˜ e 

] 

, 

(A4) 

espectively, where ρ is the mass density, u is the fluid velocity, Y 

s the mass fraction of species, D is the diffusion coefficient, τ t 
ij is 

he Reynolds stress tensor, ˙ ω is the species mass production rate, 

 is the pressure, H is the total enthalpy, T is the temperature, h 

s the static enthalpy, i.e. the sum of the sensible and formation 

nthalpy. The superscripts ¯ and ˜ denote Reynolds averaged quan- 

ities and Favre averaged quantities, respectively. The subscript s 

enotes the quantities of species s . The thermal conductivity κ is a 

ummation of two parts, i.e. the molecular one κm 

and the tur- 

ulent thermal conductivity κ t , where κt = μt c p ρ/P r t and μt is 

he turbulent viscosity. The molecular thermal conductivity κm 

is 

ixture-averaged through the mixing rule in the combination av- 

raging formula [58] . The viscous stress tensor τ ij is 

i j = 2 μS i j −
2 

3 

μS kk δi j , (A5) 

here μ is the molecular coefficient of viscosity, S ij is the strain 

ate tensor and δij is the Kronecker operator. The mixing rule for 

iscosity μ uses the Wilke semi-empirical formula [59] . For μ of 

ach species, the Sutherland formula is used 

= 

A s T 
3 / 2 

T + T s 
, (A6) 

here A s and T s are constants. 

The caloric equation of state for the enthalpy h of the gas mix- 

ure is 

 = 

ns ∑ 

s =1 

Y s h s , s = 1 , . . . , ns, (A7) 

 s = �h 

0 
f,s + 

T 

∫ 
T std 

c p dT (A8) 

here c p is the specific heat capacity at constant pressure and �h 0 
f 

s the enthalpy of formation at the reference temperature T std . E is 

he total energy expressed as 

˜ 
 = 

ns ∑ 

s =1 

(
˜ Y s ̃  h s + 

1 

2 

˜ u j ̃  u j + k − p̄ 

ρ̄

)
, (A9) 

here k is the turbulence kinetic energy. The equation of state for 

he gas mixture is 

p̄ = ρ̄ ˜ T R 

ns ∑ 

s =1 

˜ Y s 

M s 
, (A10) 

here R is the gas constant and M s is the molecular weight of the

pecies s . 

Reynolds stress tensor τ̄ t 
i j 

is closed with the standard k- ε model 

ogether with the turbulent eddy viscosity assumption 

¯ t 
i j = 2 μt ̃  S i j −

2 

3 

μt ̃  S kk δi j −
2 

3 

ρ̄k δi j . (A11) 

The governing equations for μt , k and its dissipation ɛ are 
487 
t = c μρ
k 2 

ε 
, (A12) 

∂ ( ̄ρk ) 

∂t 
+ 

∂ 
(
ρ̄ ˜ u j k 

)
∂ x j 

= τi j 

∂ ̃  u i 

∂ x j 
− ρ̄ε + 

∂ 

∂ x j 

[(
μ

P r k 

)
∂k 

∂ x j 

]
, (A13) 

nd 

∂ ( ̄ρε ) 

∂t 
+ 

∂ 
(
ρ̄ ˜ u j ε 

)
∂ x j 

= 

(
C ε1 τi j 

∂ ̃  u i 

∂ x j 
− C ε2 ρ̄ε 

)
ε 

k 

+ 

∂ 

∂ x j 

[(
μ

P r ε 

)
∂ε 

∂ x j 

]
+ C ε3 ρ̄ε 

∂ ̃  u j 

∂ x j 
, (A14) 

here C ɛ 1 , C ɛ 2 , C ɛ 3 , Pr k , Pr ɛ and c μ are model constants given by

alues of 1.44, 1.92, −0.33, 1.0, 1.3 and 0.09, respectively. Turbulent 

eat-flux and diffusion terms are closed based on Simple Gradient 

iffusion Hypothesis with turbulent Prandtl number Pr t and turbu- 

ent Schmidt number Sc t being 0.9 and 0.6, respectively as nominal 

alues. For combustion, a finite-rate chemistry model, i.e. Partially 

tirred Reactor (PaSR) model is adopted to handle autoignition and 

ifferent modes of combustion. The sub-grid reaction rate ˙ ω is 

reated on a sub-grid level by scaling the resolved reaction rate 

˙  with a factor of τc / ( τc + τmix ) , i.e., ˙ ω = τc ˙ ω / ( τc + τmix ) , where

c and τmix are chemical reaction time scale and turbulent mix- 

ng time scale, respectively. Here turbulent mixing time scale is 

odelled as τmix = k/ (ε c f low 

), where c flow 

is the turbulent rate con- 

tant of 4.0 as a nominal value. The detailed mechanism employed 

s the Li mechanism [48] , which consists of 9 species (H 2 , H, O,

H, O 2 , N 2 , H 2 O, HO 2 , H 2 O 2 ) and 21 elementary reactions, includ-

ng H 2 /O 2 chain reactions, H 2 /O 2 dissociation/recombination reac- 

ions, as well as formation and consumption of HO 2 and H 2 O 2 . The

echanism has been validated by experimental data from laminar 

remixed flames, shock tubes and flow reactors over a wide range 

298–30 0 0 K, 0.03–8.7 MPa, equivalence ratio ∅ = 0.25–5.0) [48] . 

All the simulations are performed over a two-dimensional (2-D) 

omputational domain (see the dashed-line region in Fig. 1 ) with 

 one-cell-width 3-D mesh. The constant of 0.51 m of the combus- 

or width (normal to the plane of drawing in Fig. 1 ) makes the 2-D

implification adequate in the simulations for cost-saving consider- 

tion. The inflow tunnel extends 0.2 m upstream. The inflow con- 

itions are the same as those in the experiments listed in Table 1 .

he isothermal wall condition with a temperature of 300 K is set 

or all the wall boundaries. The wall-function boundary conditions 

re adopted to bridge the inner region between the wall and the 

ain flow. The wall distance for the first cell is set to be 0.05 mm

o guarantee the first cell center is in the log-law region. Four sets 

f structured grids are tested to achieve grid convergence by mea- 

uring the predicted error of the flame lift-off length. As shown in 

ig. A1 , the grid size of 0.4 mm in the mixing layer is sufficient

o ensure less than 1% error, an equivalent 2 mm in lift-off length, 

hich is substantially less than the uncertainty, i.e., 131 mm, as- 

ociated with model parameters. Hence this set of grid is used in 

his study. 

The governing equations are solved by a density-based solver 

ased on the fully compressible flow solver rhoCentralFoam in 

penFOAM 

R ©. The inviscid flux vectors are discretized using the 

econd-order Monotone Upstream-centered Scheme for Conserva- 

ion Laws (MUSCL) method [60] . The Kurganov and Tadmor scheme 

61] is adopted to capture the shocks. The viscous flux vectors are 

iscretized using the central difference scheme. The time integra- 

ion of the species governing equations is separated into chemical 

eaction sub-steps and transport sub-steps based on the splitting 

chemes [62] . The stiff ordinary differential equation (ODE) system 

n chemical reaction sub-steps, which is an initial value problem 

ith given initial species mass fractions and temperature, is solved 

sing the OpenFOAM built-in ODE solver. The time integration in 
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Fig. A1. The predicted errors of the flame lift-off length as the function of the grid 

size in the mixing layer. 
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