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ABSTRACT

For turbulent flames involving intense turbulence-chemistry interaction, quantifying the uncertainty
originating from the parameters of chemical kinetics and physical models leads to a more rigorous
assessment of the predictability of simulations. In the present work, a successive dimension reduction
framework based on the active subspace (AS) method is formulated to efficiently quantify modeling un-
certainties associated with chemical kinetics, and turbulent combustion model parameters in turbulent
flame simulations. The approach is demonstrated in simulating a turbulent H,/O, lifted wall-jet flame.
The reduction of the high-dimensional kinetic uncertainty space is first achieved through cheap surro-
gate autoignition tests, and a single active uncertain kinetic variable is identified. Then a one-dimensional
active subspace of the uncertainty space consisting of such an active kinetic variable and four turbu-
lent combustion model parameters are further identified using 25 runs of turbulent flame simulations.
Finally, the probability distribution function (PDF) of the flame lift-off length is characterized through
Monte Carlo simulations within a cheap response surface that is constructed within the active subspace.
The components of the active subspace reveal that both chemical kinetics and turbulent mixing are criti-
cal for the flame stabilization. Further analysis shows that the uncertainty in the turbulent heat diffusion
could change the dominant reactions between R1 (H+0, = O+OH) and R9 (H+0, (+M) = HO, (+M))
through varying the local temperature in the flame stabilization zone. In addition, comparisons of the
PDFs of the flame lift-off length show that the uncertainty induced by chemical kinetics is comparable
with that induced by turbulent combustion model parameters. The successive dimension reduction of un-
certain physicochemical parameter space via AS enables efficient uncertainty quantification for turbulent
flames, meanwhile providing insights into the controlling physiochemical processes.

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

tainty in turbulent flame simulations, particularly in the context of
the flamelet-based large eddy simulations, has been addressed by

The simulations of turbulent combustion involve a large num-
ber of model parameters for chemical kinetics, turbulence model
and combustion model etc. These parameters can be determined
from theoretical derivation, experimental measurement, or even
empirical analysis, which inevitably introduce uncertainty into the
simulations [1,2]. Whether the models associated with uncertain-
ties, i.e. model-form uncertainties and parametric uncertainties,
can accurately reproduce the existing experiments and further be
predictive for their applications in situations where experiments
are difficult or expensive, remains an open question. For exam-
ple, quantification for kinetic uncertainty and model-form uncer-
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Mueller et al. [3-5]. The present study focuses on quantifying the
uncertainty originating from the large number of parameters in ki-
netics, turbulence and combustion models, which would lead to a
more rigorous assessment of the predictability of simulations. In
addition, it is important to develop analysis methods to gain in-
sights into the governing physiochemical processes for optimiza-
tion of practical combustion devices.

The forward propagation of parametric uncertainties to simu-
lation results is one of the central steps towards addressing the
above question. A classical method to conduct the uncertainty
quantification (UQ) for combustion simulations is Monte Carlo
(MC) that uses a large number of samples drawn from the distribu-
tion of the uncertain parameters. Each sample corresponds to a set
of model parameters, and for each sample the combustion prob-
lem is evaluated once. Then the uncertainty in simulation results
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can be quantified through the statistics of the predictions from
all of the samples. Due to slow convergence of MC, to make the
uncertainty quantification be efficient, various response surface
techniques have been developed to propagate the kinetics-induced
uncertainty in, for example, one-dimensional laminar flame sim-
ulations [6-10] and homogeneous reactor simulations [11-13]. A
non-intrusive method is adopted in most of these works while
the intrusive method has also been studied [12]. Wang et al.
[1] comprehensively reviewed the response surface applications in
combustion simulations. The response surface techniques mainly
include sensitivity analysis based method [14], artificial neu-
ral networks [15], polynomial chaos expansions [6,16], and high
dimensional model representations [17], among which the lat-
ter two additionally give global sensitivity information, provid-
ing physics insight into the models. However, for quantification of
modeling uncertainties in turbulent flames involving a large num-
ber of model parameters, response surface methods alone remain
intractable due to not only the ‘curse of dimensionality’ associated
with function fitting but also the high computational cost of each
individual simulation.

Dimension reduction for the uncertainty space is critical to
make the construction of the response surface tractable. Local
sensitivity analysis and screening methods have been employed
to isolate the important chemical kinetic parameters for con-
structing response surfaces [17-20]. Recently, active subspace (AS)
method, as another dimension reduction technique, has attracted
much attention in the context of uncertainty quantification. This
idea was independently proposed by Russi [21] and Constantine
[22], and Constantine et al. continued to develop it to be the-
oretically well-founded and practical for numerical implementa-
tion [23]. Instead of identifying a subset of the inputs as impor-
tant, an active subspace method identifies important directions,
terms as active subspace, in the input space. Such important di-
rections are sets of weights that define linear combinations of the
inputs, terms as active inputs. Subsequently, these active inputs are
adopted to construct the response surface. For example, Constan-
tine et al. [24] employed AS to exploit active directions in a seven-
dimensional input space and identified one-dimensional structure
in the map from seven simulation inputs to the scramjet perfor-
mance. Thus a single active variable is used to construct the re-
sponse surface instead of seven parameters, which greatly reduces
the required simulation runs.

Since the AS method isolates inputs combinations instead of a
few sensitive ones, it leads to more sufficient dimension reduc-
tion than local sensitivity analysis and screening methods. Though
the principal components (PCs) in the principal component anal-
ysis (PCA) [25] are also linear combinations of the original vari-
ables, AS method is different from PCA. The PCA reduces the di-
mension of datasets through covariance approximation to facilitate
the interpretation of such sets of data, whereas the AS identifies
directions along which a quantity of interest (Qol) changes most
to approximate the Qol as a function of a few active variables and
thus reduce the dimension of the input space [26]. The growth of
the required number of samples to compute the active subspace
is moderate with increasing input dimension, which is logarithmic
with a gradient-based algorithm or linear with local linear fitting
[23]. Constantine et al. recently used the AS method to develop
design insight [27] and applied the approach on the design of air-
foil shape [28] and turbomachinery blade [29], and adopted the
method to quantify the uncertainties in hypersonic flow simula-
tions [30].

For flame simulations, Ji et al. adopted AS to identify one-
dimensional active subspace within the high-dimensional kinetic
parameter space for efficient uncertainty propagation in both lam-
inar [31] and turbulent flame simulations [32]. They compared the
kinetic uncertainty active subspaces computed through zero-D au-

477

Combustion and Flame 222 (2020) 476-489

toignition simulations and Cabra H,/N, lifted flame [33] simula-
tions and determined that these two sets of simulations share the
same one-dimensional active subspace when the dominant physics
of the Qols is the same. Vohra et al. [34] also identified a one-
dimensional active subspace for the H,/O, mechanism using a pro-
posed active subspace-based iterative strategy. They further ex-
tended the AS analysis to include uncertainties in the activation
energy of the elementary reactions and initial conditions, and a
one-dimensional active subspace was also observed, demonstrating
the enormous potential of the AS method in applications to un-
certainty propagation in complex combustion simulation systems.
However, the AS method, so far, has only been applied to reduce
the kinetic uncertainty space. Its application for turbulent flames
with heterogeneous uncertainty parameters e.g., both chemical ki-
netic and physical uncertainties, have not been reported due to the
high computational cost to sample the whole physiochemical un-
certain parameter space.

In this work, a framework that successively reduces the dimen-
sion of physiochemical uncertainty space through the AS method
is proposed for efficient quantification of modeling uncertainties
in turbulent flame simulations. A few active directions in the high-
dimensional kinetic uncertainty space are first identified via AS
through the cheap surrogate zero/one-D simulations. Then the ac-
tive subspace of the uncertain parameter space consisting of such
a few active kinetic parameters and physical model parameters
is further identified, followed by the quantification of modeling
uncertainties for the predicted flame characteristics. Compare to
the UQ only for the kinetic parameters, the proposed method ex-
tends UQ analysis to include physical parameters and thus enables
the quantitative assessment of relative importance among different
parts of turbulent combustion modelling. The proposed framework
can be applied to quantifying the uncertainties originating from
model parameters. For the structural uncertainties associated with
the form of various component models, the current framework is
not applicable. The framework is demonstrated with the Burrows-
Kurkov (B-K) wall-jet flame simulations [35,36], with the impact
of uncertainties in kinetics and physical model parameters on the
prediction of flame stabilization being quantified. The controlling
physiochemical process for this flame is also analyzed.

The rest of the article is organized as the following. In
Section 2, the active subspace method is recalled briefly, followed
by the elaboration of the proposed successive dimension reduc-
tion (SDR) framework. The B-K flame is then described along with
the characterization of the uncertain physiochemical model param-
eters. In Section 3, results on the active subspaces for chemical ki-
netics alone and for uncertain kinetic-physical parameters of the
flame simulations are presented. Meanwhile, the controlling phys-
iochemical processes for the flame stabilization are analyzed, fol-
lowed by quantification of modeling uncertainties. Conclusions are
in Section 4.

2. Methodology
2.1. Active subspace methods

The active subspace method [23] identifies the important di-
rections along which the Qol varies the most. Let f represent the
mapping from the uncertain inputs X of dimension m to a Qol. For
example, in the context of homogenous autoignition simulations,
the inputs x is a random vector of the uncertain kinetic parameters
and the Qol is the ignition delay time. In turbulent flame simula-
tions, the parameters of various models, e.g. turbulence and com-
bustion models, along with the kinetic parameters, consist of the
inputs vector X with a given probability distribution of p(x). The
forward turbulent combustion simulation is the function f, which
maps the model parameters to a predicted quantity of interest.
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Algorithm 2.1
Compute active subspace with gradients.
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Algorithm 2.2
Compute active subspace with global linear regression.

1. Draw M = aBlog(m) independent samples {x(, ...,
X € R™ according to p(X), o is between 2 and 10.
For each x(, compute Vf(x), where i =1
. Approximate

CrCm 13 Vi f(xO) Vi fx)T,
i=1

[

w

where € is the approximation of C.

Compute the eigendecomposition ¢ = WAWT through singular value
decomposition (SVD), where the symbol ~ represents the corresponding
estimated one.

SeparateAthe eigenvalues and eigenvectors

M W,).

Bl

L

A=

| w=w
2 —~ -~ -~
where A7 =diag(Aq,..., An) and A = diag(Apiq
W, contains the first n eigenvectors, i.e. Wy, ..., Wy, and W, contains the

remain eigenvectors.

I

the corresponding active variable y = W]x € R".

The most important directions in the input space can be identi-
fied by performing an eigenvalue decomposition of the covariance
matrix of the gradient
C=/Vaf®)Vxf(X) p(x)dx = WAW, (1)
where p(x) is the joint probability density function of the inputs
and
4 (%)

Vaf(x) = (2)

o (x)

0Xm
Since C is symmetric and positive semidefinite, all the eigenval-
ues are nonnegative and the diagonal matrix A is

A =diag(A1, ..., Am), Ay = = Ay >0, (3)

with the eigenvalues being sorted in descending order. Accordingly,
the normalized eigenvectors wy, ..., Wy constitute the m x m or-
thogonal matrix W. Since the mean-squared directional derivative
of f with respect to the eigenvector w; is equal to the correspond-
ing eigenvalue, i.e.

/(fo(x)Twi)z,o(x)dx: A i=1,...m (4)

the eigenvalue represents how much f changes when disturbing x
along the direction of the corresponding eigenvector. Therefore, if
there is a large gap between nth and (n + 1)th eigenvalues, i.e.
An > An.1 Where A, is the nth eigenvalue, the corresponding first
n eigenvectors are the most influential directions and the remain-
ing m — n eigenvectors can be safely ignored. The active subspace is
the space spanned by the first n eigenvectors S = [wq, ..., wy].

If the gradient information is ready in the simulations, as is
the case for zero-D autoignition tests [37], the active subspace can
be estimated through the random sampling approach following
Eq. (1), with M = aBlog(m) samples, where § is the number of
eigenvalues to approximate and « is an oversampling factor. With
the M evaluations of the gradient, a set of eigenvalues and eigen-
vectors as well as the subsequent active subspace are obtained via
the procedure in Algorithm 2.1.

If the gradient of the Qol with respect to the input param-
eters is not accessible, which is quite common for complicated
and expensive simulations, e.g. turbulent combustion simulations,
a one-dimensional active subspace can be explored by assuming
Vxf(x) ~ b. Thus f(x) follows a global linear regression model, i.e.,
f(X) ~ ¢+ bTx, which has been the case for many engineering Qols
L24,32,34,38—40]. In this situation, the eigenvalue decomposition of
Cis

P

€ = /bb" p(x)dx = bb" = WAW',

(5)

xM} from the input space

,,,,, o) With Xy > Ans1, and

Define the active subspace as the range of the vectors in § = W; and compute
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1. Draw N = am independent samples {x, ...,
space x € R™ according to p(X).

x(M} from the input

2. Fori =1, ..., N, run simulations to obtain f = [f;, fo...., fy]".
3. Estimate b= [by,..., by|" through ordinary least squares (OLS) regression
model

b= argmin} |lc + Xb — ]2
b

where X =[x, ..., XM b is the OLS coefficients from linear regression
of f tox.

. Compute the normalized gradient of the linear model W = b/||b||, and S = W
spans the one-dimensional active subspace for f.

. Use the 2D sufficient summary plot SSP(f{(x), W'x) to validate the
one-dimensional structure off's x space.

. Use bootstrap method [42] to obtain an error bound on W and plot the
bootstrap replicates on SSP(f(x), W'x), providing the confidence in validation
in step (5).

w

D

where A = [|b||2, W =b/||b|| and the active direction W is a one-
dimensional subspace, identifying one important direction in the
input space. The assumption of the global linear model for f{x) re-
spect to the inputs can be validated by the univariate trend in a
sufficient summary plot which was developed by Cook [41] in the
context of regression graphics. Specifically, the sufficient summary
plot is a scatter plot of Qol against the linear combination of the
inputs, i.e. the active variable W'x, which is denoted by SSP(f(x),
WTX). The error of the computed components of the vector W is
estimated by using a bootstrap method [42]. The procedure of the
active subspace computation with global linear regression is out-
lined as Algorithm 2.2.

Once the active subspace is identified, the function f can be ap-
proximated in the low dimensional subspace. Recall that f varies
mostly within the active subspace and is almost constant in the
remain inactive directions, a function g of the active variables Sx
can be constructed to approximate f, i.e. fix) ~ g(§7x). The low-
dimensional response surface from the uncertainty input space
to the Qol enables the uncertainty propagation and quantification
for the expensive turbulent combustion simulations. At the same
time, the components of the active directions are the global sensi-
tivities with directions [43], providing the insight information for
the turbulent combustion.

~

2.2. Successive reduction of uncertain physicochemical parameters

In turbulent flame simulations with detailed chemical Kinetics,
the modeling uncertainty could be from not only kinetics but also
physical model parameters such as those for turbulence and com-
bustion models. For such a large number of uncertain inputs, the
required number of samples to compute the active subspace is in
the order of hundreds or even thousands with Algorithm 2.1 or
2.2. Clearly, it is too expensive to run such a large number of ex-
pensive turbulent flame simulations for a UQ analysis. In this sec-
tion, a successive dimension reduction (SDR) framework based on
the active subspace method is formulated by taking advantage of
cheap surrogate simulations for the chemical kinetics employed in
the turbulent flame simulations.

Previous works [31,34] have demonstrated that the kinetic
parameters of hydrocarbon mechanism in general have low-
dimensional active subspaces for a wide range of thermochemi-
cal conditions. Moreover, Ji et al. [32] recently showed that for
chemical kinetics, the active subspace computed through simple
representative zero/one-D simulations is similar to that computed
through expensive turbulent combustion simulations if the Qols
share the same physical insights. The similarity in the dominant
physiochemical process can be analyzed and assured through com-
putational diagnostic techniques such as budget analysis, chemi-
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cal explosive mode analysis (CEMA) [44] and Lagrangian tracking
[45,46].

Let &€ = [51,...,§mk]T, of dimension m,, be the normalized ki-
netic parameters, Ilf:[lﬂ1,...,1/fmp]T, of dimension mjp, be the
normalized physical parameters. In this study, efficient quantifica-
tion of modeling uncertainties for turbulent flames is performed
through the following two successive dimension-reductions of un-
certain physicochemical parameters.

Step one: Reduction of the high-dimensional kinetic parameter
space

(i) Extract the representative conditions from the turbulent
combustion simulations and perform cheap zero/one-D sur-
rogate simulations at these conditions. Determine the Qol
in the surrogate simulations to guarantee this Qol share the
same physical insights as that in the turbulent flame simu-
lations.

Use Algorithm 2.1 to identify the active directions, i.e.,
W, = [WEJ’ s We g ], in the kinetic parameter space, for
the Qol determined in step one (i), where n; is the dimen-
sion of the active subspace. Note that W§,1 is of dimension
my x Ng.

Project & onto the active subspace spanned by the column-
vectors in ngl, ie. ngf;'. to lump the kinetic parameters to

(iii

=

a few active kinetic parameters wglé,..., wg nk‘g'. As a re-
sult, the m;, uncertain kinetic parameters are condensed into
n, active ones, where m, is dozens to thousands while ny, is
typically one to five for hydrocarbon fuels [31], leading to a
substantial dimension reduction of the high-dimensional ki-

netic parameter space.

Step two: Reduction of the active kinetic-physical parameter
space

(i) Combine the nj, active kinetic parameters, i.e., w£1E,...,
wg,nkg, with the mp physical parameters, ie., ¥rq,...
V¥m,, to form the new uncertainty inputs 6 = [w£1§,...,

wg_nkg, wl,...wmp]r. Note that the dimension of the new

input space is ny + mp. The required turbulent flame simu-
lations for computing the active subspace in the new input
space is N = a(n, +myp), instead of a(my + my) due to the
reduction for the large number of the kinetics inputs.
Compute the active directions Wy =[wgq, ..., Wy, ] for
the Qol of turbulent combustion simulations. Note that wg 4
is of dimension (ny + mp) x Nger, and neoe is the few number
of active directions. As a result, the effective dimension of
the input parameter space has been reduced from my + m,
to ny + mp, and eventually to n¢, after the successive reduc-
tion.

Construct a response surface mapping the inputs to the Qol
within the successively reduced subspace to enable the oth-
erwise intractable UQ analysis for the turbulent combustion
simulations. Meanwhile, the components of active directions
W1, ..., Wy, indicate the relative importance of the in-
put parameters and the corresponding kinetic-physical pro-
cesses.

—
—
=

—

(iii

=

It is worth mentioning that mechanism reduction, particularly
for large hydrocarbon fuels, could be carried out as a preliminary
step of step one to reduce the computational cost of the active sub-
space analysis for the kinetic parameters. Through mechanism re-
duction, the number of involved reactions for UQ analysis can be
reduced by eliminating unimportant reactions. Note that mecha-
nism reduction is different from the AS dimension reduction. For
AS, the full set of reactions are maintained and the inactive sub-
space is removed by identifying directions along which the Qol
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Combustor entrance Combustor exit '

Air

0.089 m
0.004 m

0.1048 m

1 0.356m
H, injection [ y

Fig. 1. The schematic of the Burrows-Kurkov combustor with the dashed-line
showing the computational domain.

changes most and thus reducing the dimension of the input space
[23].

2.3. Demonstration case: Burrows-Kurkov Hy/O5 wall-jet flame

The Burrows-Kurkov (B-K) wall-jet flame [35,36] is simulated
with uncertainty associated with kinetics and physical models, to
demonstrate the proposed SDR framework. The schematic of the
B-K combustor is illustrated in Fig. 1. The high-temperature viti-
ated air flows through a wind tunnel into a stepped-wall combus-
tor, while the hydrogen is injected from a slot vertical to the tunnel
and then flows parallel into the vitiated airstream. The two inflow-
ing streams, as listed in Table 1, mix with each other in the com-
bustor, and ignition occurs downstream near the wall resulting in
a wall-jet flame.

All the simulations are performed over a 2D computational do-
main (the dashed-line region in Fig. 1) with a compressible multi-
component solver within the OpenFOAM platform [47]. The simu-
lation details including the physical models, numerical settings and
grid independence are presented in Appendix A and are summa-
rized in Table 2. The detailed mechanism employed is the Li-2004
[48] mechanism, which consists of 9 species and 21 elementary
reactions.

The simulation results are validated against experimental mea-
surement. As shown in Fig. 2a, the flame is stabilized at around
0.17 m downstream of the fuel inlet, which is in the range of 0.15-
0.2 m obtained from ultraviolet imaging [36]. Together with the
contour plot, the profiles of the heat release rate (HRR) and OH
mass fraction along the upper lip-line of the fuel inlet are shown
in Fig. 2b. The location of the HRR peak captures the flame stabi-
lization location better than that of the OH peak. Hence, a flame
lift-off length, denoted by L, is defined by the distance from the
fuel inlet to the location of the HRR peak. As shown, L is 0.174 m
according to the definition. In addition, as shown in Fig. 2c, the
predicted species profiles at the combustor exit agree well with
the experimental ones, even though for Y < 0.015 m species H,O is
slightly over-predicted, and species H, is slightly under-predicted.
The validation indicates that the model strategy adopted is ade-
quate for the following uncertainty analysis.

In this study, the lift-off length is selected as the quantity of in-
terest to demonstrate the proposed method for uncertainty quan-
tification, since flame stabilization is of primary importance in
practice. Moreover, the flame lift-off length is measured in the
Burrows-Kurkov experiment together with an uncertainty range.
This will facilitate the validation of the underlying turbulent com-
bustion models.

2.4. Characterization of model uncertainties

For the rth reaction in Li mechanism [48], the rate-constant k;
is assumed to follow the Arrhenius rate law as a function of tem-
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Table 1

The inflowing conditions for the Burrow-Kurkov experiments.
Parameter Ma T (K) P (Pa) Yoz Yno Y20 Yho
Air stream 24 1260 101,325 0.258 0486 0256 0.0
Hydrogen stream 1.0 254 101,325 0.0 0.0 0.0 1.0

Table 2
The simulation settings for the Burrows-Kurkov flame.

Solver Unsteady compressible reactive flow solver

Standard k-& model with C;, = 0.09, C;; = 1.44, (s, = 1.92, ;3 = —0.33, o = 1.0, and «, = 0.769
Partially stirred reactor (PaSR) with T = k/(&Cfiow), Criow = 4.0

Sce = 0.6, Pre= 0.9

The law of the wall u* = 1 In(y*) + B with A = 0.4187, B=5.45

Turbulence model

Turbulence combustion model
Turbulent transport

Wall treatment

Table 3
The uncertainty factors for elementary reactions in the Li mechanism.

logarithmic form

E
# Reaction Fr In kr =In Ar +n,InT — %. (7)
R1 H+ 0, = O + OH 1.5 . .
R2 0+ Hz — H4OH 13 Following the previous work [6,9,10,31,32,49], the rate-
R3 Hy, + OH = H,0 + H 2 constants are uncertain. Specifically, the Ink;’s of all the reac-
R4 0 + H,0 = OH + OH 15 tions are independent of each other and normally distributed,
R5 Hy + M= H+H+M 2 ie, In k- ~ N (u, 02), where u is the mean value and o is the
R6 0+0+M% 0, + M 2 standard deviation. In this work, the mean of Ink; is the corre-
R7 O+H+M=OH+M 3 . S ’ U -
RS H+OH+M = H,0 + M 2 sponding nominal value Ink,y and the standard deviation is set
R9 H + 0, (+ M) = HO, (+ M) 1.2 to be %ln F, where F, is the temperature-independent uncer-
R10 HO; + H=H, + 0, 2 tainty factor adopted from Konnov [50]. The F,’s are summarized in
R11 HO, + H = OH + OH 3 Table 3 for all the reactions. Each Ink, can be centered by the
R12 HO, + 0 = 0, + OH 1.2 . .. .
R13 HO, + OH < H,0 + O, 3 mean and normalized by th_e s'tanc_lard .dev1at10n as &r, which fol-
R14 HO, + HO, = H,0, + O, 25 lows the standard normal distribution, i.e.,
R15 HO, + HO; = H,0; + 0, 1.4 Ink./k
R16 H,0, (+ M) = OH + OH (+ M) 25 £ = nKkr/ko N, 1), r=1,...,21, (8)
R17 H,0; + H = H,0 + OH 3 LInE o T
R18 H,0, + H = HO, + H, 2 3
R19 H;0; + 0 = OH + HO, 3 Hence, the number of the uncertain kinetic parameters is 21
g(l’ 3282 + 8: = :82 + :28 5 and the uncertainty inputs can be represented by a 21-dimensional
2% + PR = H0 random vector & = [&,....&1] ~ N(0, Iy).
For the turbulence and combustion models, the k-& turbulence
model parameter Cgq, the PaSR combustion model parameter cgyy,
perature turbulent Schmidt number Sc; and Prandtl number Pr; are consid-
ered to be uncertain to represent the significance of turbulence,
n ECLT . .. . .
k-(T) = A, T™ exp “RT ,r=1,...,21, (6) combustion, turbulent mixing modeling, respectively. The ranges

where A; is the pre-exponent, n, is the temperature exponent, Eg, »
is the activation energy. This expression can be interpreted in a

300 1000 1500 2000

- ' '

2400

from these parameters are compiled based on the reported val-
ues in literature. The uncertainty characterization of the four phys-
ical model parameters are summarized in Table 4, with uniform

(a) Temperature (K)
0.8
C
2 0.6
9]
©
0 0.4
=)
=
0.2
1 1 1 1 1 1 1 0'0 1 1 1 1
00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.02 0.04 0.06 0.08
X [m] Y [m]

Fig. 2. (a) The contour plot of the temperature where L denotes the lift-off length, (b) the profiles of the HRR and OH mole fraction along the upper lip-line of the hydrogen
inlet, and (c) the profiles of species mole fractions at the combustor exit with the experimental data.
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Table 4
Uncertainty characterization of turbulence and combustion model parameters.
Parameter Nominal Min Max
Ca 1.44 13 1.7
Cliow 4.0 0.5 4.0
Sce 0.6 0.5 1.0
Pr; 0.9 0.5 1.0

distribution on their spaces bounded by the range following the
maximum entropy principle from Jaynes [51]. The turbulence
model constants C,; in general has strong impact on jet spreading
[52]. In addition, C,; was introduced to account for the pressure
diffusion and effect of the near-wall anisotropy that may be signif-
icant in the wall-jet flame. For PaSR combustion model, the model
constant cpoy, has an impact on the mean chemical reaction rate
and treated as an uncertain parameter with the range of 0.5-4.0
to account for the effects of finite rate chemistry. The parameters
Sc: and Pr; in general have profound influence on the predicted
flame characteristics through affecting turbulent mass or thermal
diffusion [53,54] and a range of 0.5-1.0 is chosen according to the
literature investigation. It is worth to mention that the input pa-
rameters are centered at zero and normalized to be over [-1, 1]
in the subsequent active subspace analysis, and (C.1), {(cgow), {Sct),
(Pr¢) are used to denote the corresponding normalized value.

3. Results and discussions

For the UQ analysis of expensive turbulent combustion simula-
tions with high-dimensional uncertainty space, the aim is to prop-
agate uncertainties in the following modeling parameters to the
flame lift-off length L in the B-K simulations: (i) rate-constants k;’s
for the chemical kinetics, and (ii) turbulence Schmidt number Sc,
turbulence Prandtl number Pr¢, turbulence model constant C,; and
combustion model parameter cg,, for the physical models. The di-
mension of the uncertainty space is reduced within the proposed
SDR framework to enable the otherwise intractable UQ. In this sec-
tion, the results from implementing this heuristic approach in the
B-K simulations will be demonstrated.

3.1. Active subspace of chemical kinetics and key reactions

3.1.1. Active subspace from surrogate zero-D autoignition tests

According to step one of the SDR framework, the active sub-
space of the kinetic uncertainty space is first computed through
cheap surrogate simulations at the representative conditions. Pre-
vious analysis [55] showed that for the Burrows-Kurkov flame, a
chemical explosive mode exists at the flame onset location, and
the dominant physiochemical process for flame stabilization is au-
toignition. Hence, zero-D autoignition tests are chosen as the sur-
rogate simulations. The representative condition is extracted from
a critical location upstream where the ignition occurs. The criti-
cal location is defined as where the mass fraction of H,O starts
to be significantly larger than that of O,, and recall that these
two species have the almost same mass fraction in the vitiated
air stream. To capture this location, the profiles of species mass
fraction and temperature are plotted over the upper lip-line of the
fuel inlet, as shown in Fig. 3 from which the representative con-
dition is obtained, that species mass fractions are Yy, = 0.0191,
Yo = 0.245, Y0 = 0.245 and Yy = 0.475, and temperature is
956 K and pressure is 100,523 Pa. The adiabatic, isobaric autoigni-
tion tests under the representative condition as the initial state are
performed based on Cantera [56].

The active subspace is computed using Algorithm 2.1 through
M = 670 random samples drawn for the normalized rate-constants
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Fig. 3. The profiles of species mass fraction and temperature over the upper lip-
line (the dashed line in the contour plot), and the vertical dotted line is the location
where the representative condition is extracted.

{&1...., &2} according to their distribution densities. The eigen-
values of the covariance matrix of the gradient of ignition delay
time (IDT) with respect to 0 are plotted in Fig. 4a, showing that
the first eigenvalue is larger than the second one by one order
of magnitude, implying that the kinetics input space has a one-
dimensional active subspace. To confirm this, the summary plot
of log(IDT) versus wg‘]‘g is shown in Fig. 4b, where wy ; is the

first eigenvector corresponding to the largest eigenvalue. As illus-
trated, the values of log(IDT) approximately distribute on a one-
dimensional curve and the width of the curve is small, confirm-
ing the one-dimensional structure of the kinetic uncertainty space.
Therefore, it is sufficient to choose the first eigenvector, i.e. w ; to
span the one-dimensional active subspace for kinetic parameters.

A response surface is constructed in the active subspace by the
second order polynomial fitting, as shown in Fig 4b. The proba-
bility distribution function (PDF) of the log(IDT) is subsequently
evaluated via the response surface, as shown by the solid line in
Fig. 4c. Meanwhile, a deterministic solution for the distribution of
the log(IDT) is available by directly evaluating each sample via au-
toignition integration, as shown by the dashed line in Fig. 4c. As
illustrated, the results from the AS method agree well with the ac-
curate ones with the differences in the mean and standard devi-
ation being less than 1%, demonstrating the effectivity of the AS
method and the adequacy of the one-dimensional active direction
WEJ.

The components of wg ; are shown in Fig. 5, providing the rel-
ative importance of the reactions. As shown, the most sensitive re-
action is R1 (H+0, = 0+O0H), which is the major chain branching
reaction. This is consistent with the findings in the work of Wu
et al. [47] that the evolutions of the OH and H radicals dominate
the chemical explosive mixing layers ahead of the flame stabiliza-
tion location. The secondary sensitive reaction is R9 (H + Oy (+M)
= HO, (+M)) which is the main competition reaction to R1 in
consuming H, and no surprise it has an opposite sign to R1 and
retards autoignition process.

The active subspace is also estimated with Algorithm 2.2 to
confirm that it is adequate to use linear regression to compute the
active subspace, since it is computationally intractable to evaluate
the gradient of the flame lift-off length L through the B-K simu-
lations and Algorithm 2.2 will be employed at this situation. The
same set of samples is used to perform the calculation, and the
active subspace is shown in Fig. 5 with the triangle which is in per-
fect consistency with that estimated based on gradient. Moreover,
the overlap between the two corresponding SSPs(log(IDT),ngg)
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Fig. 6. The summary plot of flame lift-off length L versus wgvlg through B-K simu-
lations; the overlapping grey dots are from 100 bootstrap replicates of SSP(L,WLE);
the dashed line is the fitted response surface by using second order ployfit.

shown in Fig. 4b demonstrates that the one-dimensional active
subspaces computed by both algorithm variants coincide.

3.1.2. Assessment of active subspace with flame simulations

To assess the capacity of the surrogate simulations in comput-
ing active subspace for kinetics, the subspace is also computed
using 50 B-K simulation samples to draw the comparison. The
one-dimensional active direction for the flame lift-off length L
computed with Algorithm 2.2 is shown in Fig. 5 with the errors
estimated by bootstrap. The corresponding summary plot is dis-
played in Fig. 6 which shows a strong univariate trend in the func-
tion of L versus wglg' with a narrow scatter of the 50 simples. This

confirms that the kinetic uncertainty space has a one-dimensional
active subspace for the Qol, which is consistent with the analysis
by using the surrogate simulations.

The comparison between the active subspaces for the IDT in the
autoignition simulations and the flame lift-off length L in the B-K
simulations is shown in Fig. 5. As shown, these two sets of com-
ponents are consistent in general. Significant differences can only
be observed for the chain propagating reaction (R3). The sensitiv-
ity analysis in Li et al. [48] demonstrated that the laminar flame
speed is sensitive to this reaction, while the ignition delay time is
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Fig. 5. The components of the active subspace computed based on gradient, linear regression through autoignition simulations for the kinetics inputs, compared with those

obtained through B-K simulations.
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Fig. 7. The components of the active subspace wy computed with and without
the SDR framework, with the error bars estimated by bootstrap, also shown is the
equivalent active rate-constant R’.

essentially insensitive to R3 at all conditions. This may explain the
significantly promoted sensitivity of L to R3 in the B-K simulation,
in which rather than a pure autoignition process, the species diffu-
sion ahead of the flame stabilization zone elevates the reactivity of
R3 and moves the lifted flame towards upstream. The sensitivity to
the reaction R11 is slightly promoted for the same reason and the
sensitivity to the reaction R1 is inhibited. Nevertheless, the active
subspace estimated through the surrogate autoignition simulations
is reasonably coincident with that computed through the B-K sim-
ulations with an inner product of 0.967. Therefore, the zero-D au-
toignition simulations have the ability to surrogate the expensive
B-K simulations to identify the active subspace of the kinetic un-
certainty space, which would significantly reduce the number of
required runs in the subsequent active subspace analysis for the B-
K flame involving both kinetic and physical uncertain parameters.

Following step one (iii) of the SDR framework, with the one-
dimensional active subspace demonstrated by the surrogate sim-
ulations, an active variable is obtained by projecting the 21 rate-
constants & =[£;,....&;]" onto the active direction, i.e. wg1‘g‘
which can be treated as an averaged rate-constant weighted by
the corresponding components of the vector wg ;. To make this
active variable have a physical meaning that larger value repre-
sents a higher reaction rate, an active rate-constant, denoted by
R, is defined as —wgl‘g, since Wy ; is calculated from IDTs which
has a negative correlation with the reactivity. Since &;has been nor-
malized to follow the standard normal distribution, R also follows
the standard normal distribution, i.e. R ~ A/(0, 1). This active rate-
constant R will be adopted in the later section to draw random
samples from the kinetic uncertainty space and to represent the
behavior of the kinetics in the B-K flames.

3.2. Dimension reduction for kinetic-physical uncertainty parameters

3.2.1. Active subspace for flame-lift off length
Lumping the active rate-constant R and uncertain model pa-
rameters, i.e. Sct, Pry, C;; and ¢y, an input parameter vector rep-

resented by 0 = [R, (Sct), (Pr¢), (Co1 ), (cﬂow)]T e R> is constructed.
Following step two of the SDR framework, the active subspace
of such a kinetic-physical input parameter space for the flame
lift-off length L is explored with Algorithm 2.2 to further reduce
the dimension. N = 25 samples with the oversampling factor be-
ing 5 is drawn from the uncertainty space spanned by 0. The
R-square of the global linear regression is 0.976, suggesting that
Algorithm 2.2 is adequate to identify the active subspace. The one-
dimension active subspace for L is shown in Fig. 7 with the errors
estimated by bootstrap. The corresponding SSP(L, wge) is plotted
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Fig. 8. The summary plot of flame lift-off length L with and without the SDR frame-
work through B-K simulations; the overlapping dots are from 100 bootstrap repli-
cates of the corresponding SSPs.

in Fig. 8 which shows that the predicted L’s from the 25 simula-
tion runs lie close to a one-dimensional curve, confirming a nearly
one-dimensional mapping between the linear combination of the
inputs wg(-) and L. In this situation, the one-dimensional active di-
rection is sufficient to describe the behavior of the flame lift-off
length. In addition, the narrow scatter of the bootstrap replicates
indicates that 25 samples with the oversampling factor being 5 is
sufficiently large for the SDR input space spanned by 6.

As shown in Fig. 7, L is significantly sensitive to three of the
five parameters i.e., R, Sc;, Pr;, whereas it is insensitive to C.; and
Ciow- The critical importance of the chemical kinetics is consistent
with the findings in a chemical explosive mode analysis for this
flame [47] that the buildup and evolution of the OH and H radicals
dominates the chemical explosive mixing layer ahead of the flame
initiation. More specifically, due to the monotonous-rise trend in
the SSP(L, wg(-)), the negative sign of R component indicates that
a larger reaction rate shifts the flame towards upstream, which is
caused by a shorter resident time required for the autoignition of a
more reactive mixture. Besides the kinetics, the significant sensitiv-
ity of L to turbulent transport parameters Pr; and Sc; implies that
turbulent mixing is also important for flame stabilization. The tur-
bulence thermal conductivity increases with decreasing Pr;, lead-
ing to more heat loss and shifting the flame further downstream.
On the contrary, decrease Sc; enhances the turbulence mass mixing
for the non-premixed flows, which accelerates the ignition process
and, hence moves the flame towards upstream. The small value of
the C,; component provides the evidence that the turbulence eddy
itself has much less effects on the flame stabilization location than
the kinetics as well as turbulence thermal and mass diffusivity. The
component corresponding to ¢,y is also relatively small. Figure 9
shows the streamwise HRR profiles for cases with different cg,y,’s,
illustrating that the onset of the HRR is almost same for all the
cases, while the downstream rise and decline become moderate
with decreasing cp,,, due to the increasing finite rate chemistry ef-
fects. The relatively uniform distribution for cases with small cggy,'s
is also observed in the contour plots of the intermedium species H.
Therefore, cqy, has very little impact on the onset of the flame. Be-
cause L is defined by the location of HRR peak, smaller cg,,, leads
to a slightly larger L, which is consistent with the negative sign of
Cflow component in Fig. 7.

3.2.2. Assessment of the active rate-constant

Due to the critical importance of Kkinetics, the behavior
of the active rate-constant R is further assessed through in-
dependently sampling rate-constants in a direct AS analysis.
The input space is then spanned by the vector ¢§=
[€1,.... &1, (Sce), (Pre), (Ce1 ). (Cow)]” € R%>. With the oversam-
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Fig. 9. The streamwise HRR profiles along the upper lip-line of fuel inlet, and H
mass fraction contours for cases with cg,, of 1.0, 2.0 and 4.0.

pling factor being 2, N = 50 samples are drawn for £ according to
the distribution densities. The components of the one-dimensional
active subspace w; are estimated with Algorithm 2.2 and shown in
Fig. 10. The corresponding SSP(L,wgg) is plotted in Fig. 8, showing
a reasonable univariate trend and the scatter is small even though
larger than that of SSP(L, wge) due to a lower oversampling factor.
Nevertheless, the summary plot SSP(L,W{C) provide confidence of
the one-dimensional active subspace wy, from which a equivalent
active rate-constant, denoted by R’, can be obtained by computing
the Euclidean norm of the vector that consists of all the kinetic
components.

The equivalent R’ along with the physical components are plot-
ted in Fig. 7 to make a comparison. As shown, R from the SDR
framework is consistent with that from direct AS analysis, further
indicating that one can use a single active rate-constant instead of
a large number of individual ones to account for the kinetic un-
certainty in the UQ analysis for turbulent combustion simulations.
It is also interesting to observe that, not only the kinetics is dom-
inant as shown in Fig. 7, but the most important reaction R1 has
the roughly same sensitivity as that of the most important turbu-
lence parameter Pr; as shown in Fig. 10. This suggests that to im-
prove the confidence of L prediction, reducing the uncertainty in
R1 is as important as reducing the uncertainty associated with tur-
bulent heat diffusion. In other words, to reduce the uncertainty in
the prediction and balance the error contributions from the mod-
els, the accuracy of the kinetic model, particularly the kinetic pa-
rameters of key reactions, e.g. R1, R3 and R9, needs substantial im-
provement, together with the careful calibration of the turbulent
transport parameters. For the turbulence and combustion models
employed in this study, the corresponding model parameters has
negligible influence on the prediction uncertainty and no further
improvement is needed.

3.2.3. Effects of physical parameter uncertainties on key reactions
From Fig. 10, the effects of the physical uncertainties on the key
reactions can also be addressed through the comparison of w; and
We 4 from the B-K simulations. As shown, when the physical pa-
rameters are uncertain, the sensitivity of L to reaction R1 (H + O,
= 0 + OH) is weaken while R9 (H + O, (+ M) = HO, (+ M))
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and R11 (HO, + H = OH + OH) are significantly promoted. This
is mainly caused by the local temperature change in the reaction
zone due to the uncertainty in Pr; which dominates physical ef-
fects among the four physical parameters. To confirm this claim
and gain a better understanding, the rate-constants of R1 and R9
as a function of temperature are plotted in Fig. 11. Note that the
chain-branching reactions R1 and the chain-propagating reaction
R9 are competitive in consuming H and O,. The rate-constant k; is
in a modified Arrhenius form, i.e. ki (T) = AT"exp(—E4/RT), while
kg is a pressure-dependent falloff reaction and follows the expres-
sion

ko(T) = km(%)nn), 9)

where F(P;) is the falloff function and estimated by using Troe’s fit-
ting [57] with Feent, P = kg[M]/keo, and [M] = Y &sCs. Cs and &5 are
the concentration and collision efficiency of species s, respectively.
All the parameters are from the Li-2004 mechanism, and the con-
centrations are from the B-K simulations.

As shown in Fig. 11, the curves of k; and kg intersect at the
temperature of 1082 K, denoted by Tcsica, below which R1 dom-
inates the reaction between H and O,, whereas when the tem-
perature goes above T_;ica» R1 rapidly overtakes R9. The value of
Teritical 1S also marked in Fig. 3, from which it can be observed
that the temperature at the flame stabilization location is around
Teritical- This suggests that uncertainty associated with turbulent
heat diffusion would induce uncertain local temperature randomly
distributed around T, leading to different dominant reaction
regimes in the flame stabilization zone. Specifically, when Pr; is as-
signed with the uncertainty range of [0.5, 1.0] which is the case in
the present work, rather than the nominal value of 0.9, the local
temperature is more likely to be below the nominal one, since heat
diffusion is enhanced with decreasing Pr;. This would subsequently
increase the reaction rate of R9 while decrease that of R1, explain-
ing when physical uncertainty is taken into account, the formation
and consumption of HO, reactions are promoted and H,/0, chain
reactions are conversely inhibited as shown in Fig. 10.

3.3. Quantification of modeling uncertainties

The summary plots of SSP(L,WQIE) and SSP(Lw{#), SSP(L,wzC)
in Figs. 7 and 9, respectively, indicate that univariate models are
reasonable choices for propagating the corresponding input un-
certainty. Therefore, based on second-order polynomial fitting, the
response surfaces are constructed in the corresponding active sub-
spaces as shown in Fig. 6 for only the kinetic uncertainties con-
sidered and Fig. 12a for both the kinetic and physical uncertainties
considered, with and without SDR. The R-square values of the fit-
ting for SSP(L,ngg), SSP(Lwj®) and SSP(L,WZ{) are 0.994, 0.986
and 0.982, respectively, confirming that the fitting error of the re-
sponse surfaces is sufficiently small. Then the propagation of the
kinetic uncertainties is first investigated based on the response sur-
faces, followed by the propagation of the kinetic-physical uncer-
tainties.

3.3.1. Propagation of kinetic uncertainties

Figure 12b shows the PDFs of L estimated by drawing 10,000
samples. As shown, when only the kinetic uncertainties are taken
into account to build the response surface, the mean of the un-
certain L is 0.177 m and the 95% confidence interval is [0.124 m,
0.227 m]. When both the kinetic and physical uncertainties are in-
cluded to construct the response surface, the mean of L is 0.207
and 0.216 m with and without SDR, respectively. The 95% con-
fidence interval is [0.152 m, 0.265 m] and [0.152 m, 0.279 m)]
with and without SDR, respectively. The results show that the two
sets of kinetic-introduced uncertainty of L are roughly consistent
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Fig. 11. Reaction rate-constants of the reaction R1 and R9 as a function of temper-
ature.

whether or not they employ the SDR, indicating that the Kkinetic
uncertainty can be properly propagated within the proposed SDR
framework. More interestingly, the comparison between the PDFs
with the legends of ‘only kinetics’ and ‘SDR+AS’ demonstrates that
the physical uncertainty effects increase the mean of L while the
length of the 95% confidence interval remains the same. This is

0.276 m], which is slightly smaller than that estimated with direct
AS analysis. Nevertheless, the comparison between the two PDFs
of L indicates that the kinetic and physical parameter uncertainties
can be properly propagated within the SDR framework, validating
the proposed SDR framework in the current application.

Moreover, the PDFs considering only the kinetic uncertainty R
and only the physical uncertainties, i.e., Sct, Pry, C,; and cggy, are
evaluated based on the SDR response surface in Fig. 12a. As shown
in Fig. 13b, these two PDFs are essentially overlapped, indicating
that the uncertainty of L introduced by the physical parameter un-
certainties, particularly by turbulence mass and heat diffusion as
discussed in Section 3.2, is comparable with that introduced by the
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0.35 | — Polyfit SDR+AS e —»— SDR+AS
— = Polyfit AS Re 125 ¢ —e- AS
0.30 10.0 | --0-- only kinetics
€025} w75
— a
0.20 } 5.0
0.15 | 2.5
. . . . . 0.0 s : .
-5 -10 =05 00 0.5 1.0 15 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.4
wge,wlg L (m)

Fig. 12. (a) The response surfaces constructed in the active subspaces by fitting SSP(L,W&O) within the SDR framework and SSP(L,W{() in direct AS analysis; and (b) the PDFs

of L evaluated based on the response surfaces with 10,000 samples.

485



N. Wang, Q. Xie, X. Su et al.

(a)

—6— SDR+AS
—A— AS

125

10.0

7.5

PDF

5.0

(b)

—6— total
kinetic
physical

L N,
125 AN

10.0 1

7.5}

PDF

501

257

0.0
0.05 0.10 0.15

0.20 0.25 0.30 0.35 0.40 0.45
L (m)
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introduced by kinetics and turbulence.

kinetic uncertainty, even though the kinetics is dominant in L pre-
diction. This result suggests that in addition to the kinetic uncer-
tainty, one should also sufficiently consider uncertainty associated
with turbulence and combustion models to improve the confidence
in the prediction of the turbulent flames, even though the domi-
nant role of the kinetics on the flame lift-off length has been well
proved in this application.

4. Conclusions

In this work, a successive dimension reduction (SDR) frame-
work based on the active subspace (AS) method is formulated
to reduce the dimension of the physiochemical uncertainty space
for modeling uncertainty quantification of turbulent flames. The
performance of the SDR framework is demonstrated with the
Burrows-Kurkov (B-K) wall-jet flame simulations which consider
21 uncertain rate-constants, and four physical uncertainty pa-
rameters, ie. Sc, Pry, Cq and cp,,. A one-dimensional active
subspace and the corresponding single active rate-constant are
identified for the 21 rate-constants through the cheap surrogate
autoignition simulations. The dimension of the reconstructed in-
put space including uncertain physical parameters and the active
rate-constant is reduced to one, enabling efficient UQ of the pre-
dicted flame lift-off length through the response surface built in
this one-dimensional subspace. In addition, the dimension of the
uncertainty space is also reduced through direct AS analysis to as-
sess the SDR framework.

The active subspaces of the uncertain rate-constants computed
though the autoignition tests and B-K simulations are essentially
the same, indicating the zero-D autoignition tests are able to surro-
gate the expensive B-K simulations to identify the active subspace
for the kinetics. The components of the active subspace reveal that
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the chain branching reaction R1 (H+0, = 0+OH) dominates the
ignition delay time as well as the flame lift-off length. Further
comparison between the active rate-constant and the equivalent
one from the B-K simulations, confirms the ability of the active
rate-constant in propagating the kinetic uncertainties when the
physical uncertainties are also considered. From the comparison
between the PDFs from the SDR framework and direct AS analysis,
it is concluded that the SDR framework can reproduce the proba-
bility distribution of the predicted flame lift-off length driven from
kinetic and physical parameter uncertainties.

The physical uncertainties, particularly the uncertainty associ-
ated with turbulent heat diffusion, is found to have impact on
the kinetic uncertainties propagation through promoting the re-
actions of formation and consumption of HO,, particularly reac-
tions R9 (H+0, (+M) = HO, (+M)) and R11 (HO,+H = OH+OH),
and weaken the H,/O, chain reactions, mainly R1. The uncertainty
in the turbulent heat diffusion introduces the variation of the lo-
cal temperature in the flame stabilization zone and subsequently
changes the dominant reaction between the competitive reactions
R1 and R9. A more prevalent role of R9 retards the autoignition
and leads to a larger mean of the flame lift-off length than that
without the physical uncertainty.

The components of the active subspace reveal that chemical ki-
netics plays a dominant role for the flame stabilization location,
followed by turbulent transport parameters Pr; and Sc;, whereas
the turbulence and combustion model parameters C,q and cgoy
have negligible impact on L. The PDFs of L further show that the
uncertainty induced by chemical kinetics is comparable with that
induced by the overall physical models. Both chemical kinetics and
turbulent mixing are essential for the flame initiation in the B-K
flame. Note that current work considers only the uncertainties in
model parameters, future work may include the quantification of
model-form uncertainty.
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Appendix A. Governing equations and numerical details of
Burrows-Kurkov flame simulations

The computational model solves the Reynolds averaged Naiver-
Stokes equations for compressible reacting flows. The total fluid
density equation, continuity equation for species m, momentum
equation and energy equation are
a,oﬁ]
8Xj

9p

ot =0,

(A1)
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respectively, where p is the mass density, u is the fluid velocity, Y
is the mass fraction of species, D is the diffusion coefficient, % is
the Reynolds stress tensor, @ is the species mass production rate,
p is the pressure, H is the total enthalpy, T is the temperature, h
is the static enthalpy, i.e. the sum of the sensible and formation
enthalpy. The superscripts ~ and ~ denote Reynolds averaged quan-
tities and Favre averaged quantities, respectively. The subscript s
denotes the quantities of species s. The thermal conductivity « is a
summation of two parts, i.e. the molecular one «x;; and the tur-
bulent thermal conductivity k¢, where k¢ = w¢cpp/Pry and ¢ is
the turbulent viscosity. The molecular thermal conductivity «, is
mixture-averaged through the mixing rule in the combination av-
eraging formula [58]. The viscous stress tensor T is
2

Tjj = 2uS;; — §Uskk8ij’ (A5)
where p is the molecular coefficient of viscosity, S; is the strain
rate tensor and §;; is the Kronecker operator. The mixing rule for
viscosity u uses the Wilke semi-empirical formula [59]. For u of
each species, the Sutherland formula is used

A T3/2
T TH+T
where As and Ts are constants.

The caloric equation of state for the enthalpy h of the gas mix-
ture is

(A6)

ns
h:ZYShS, s=1,...,ns

s=1

(A7)

T
hs= AhQ + [ cpdT (A8)
' Tsta

where ¢, is the specific heat capacity at constant pressure and Ah?

is the enthalpy of formation at the reference temperature Tyy. E is
the total energy expressed as

ns .l
(YshS + u]u] +k— z

E=)
s=1

where k is the turbulence kinetic energy. The equation of state for

the gas mixture is

(A9)

(A10)

where R is the gas constant and M is the molecular weight of the
species s.

Reynolds stress tensor fitj is closed with the standard k-& model
together with the turbulent eddy viscosity assumption

- = 2 _
T = 2eSij — 3 Z1eSadij — :0]‘51'1” (A1)

The governing equations for WU, k and its dissipation ¢ are
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e =Cup—, (A12)
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3 de o
[()] i

where C., Cy, Cgs, Pry, Pre and ¢, are model constants given by
values of 1.44, 1.92, —0.33, 1.0, 1.3 and 0.09, respectively. Turbulent
heat-flux and diffusion terms are closed based on Simple Gradient
Diffusion Hypothesis with turbulent Prandtl number Pr; and turbu-
lent Schmidt number Sc; being 0.9 and 0.6, respectively as nominal
values. For combustion, a finite-rate chemistry model, i.e. Partially
Stirred Reactor (PaSR) model is adopted to handle autoignition and
different modes of combustion. The sub-grid reaction rate @ is
treated on a sub-grid level by scaling the resolved reaction rate
@ with a factor of T¢/(Tc + Tmiy), 1. @ = Tc@/(Tc + Tmiy), Where
T and T are chemical reaction time scale and turbulent mix-
ing time scale, respectively. Here turbulent mixing time scale is
modelled as Ty = k/(Cf10y), Where Cpyy is the turbulent rate con-
stant of 4.0 as a nominal value. The detailed mechanism employed
is the Li mechanism [48], which consists of 9 species (H,, H, O,
OH, O, N, H,0, HO,, H,0,) and 21 elementary reactions, includ-
ing H,/0, chain reactions, H,/O, dissociation/recombination reac-
tions, as well as formation and consumption of HO, and H,0,. The
mechanism has been validated by experimental data from laminar
premixed flames, shock tubes and flow reactors over a wide range
(298-3000 K, 0.03-8.7 MPa, equivalence ratio ¢ = 0.25-5.0) [48].

All the simulations are performed over a two-dimensional (2-D)
computational domain (see the dashed-line region in Fig. 1) with
a one-cell-width 3-D mesh. The constant of 0.51 m of the combus-
tor width (normal to the plane of drawing in Fig. 1) makes the 2-D
simplification adequate in the simulations for cost-saving consider-
ation. The inflow tunnel extends 0.2 m upstream. The inflow con-
ditions are the same as those in the experiments listed in Table 1.
The isothermal wall condition with a temperature of 300 K is set
for all the wall boundaries. The wall-function boundary conditions
are adopted to bridge the inner region between the wall and the
main flow. The wall distance for the first cell is set to be 0.05 mm
to guarantee the first cell center is in the log-law region. Four sets
of structured grids are tested to achieve grid convergence by mea-
suring the predicted error of the flame lift-off length. As shown in
Fig. A1, the grid size of 0.4 mm in the mixing layer is sufficient
to ensure less than 1% error, an equivalent 2 mm in lift-off length,
which is substantially less than the uncertainty, i.e., 131 mm, as-
sociated with model parameters. Hence this set of grid is used in
this study.

The governing equations are solved by a density-based solver
based on the fully compressible flow solver rhoCentralFoam in
OpenFOAM®. The inviscid flux vectors are discretized using the
second-order Monotone Upstream-centered Scheme for Conserva-
tion Laws (MUSCL) method [60]. The Kurganov and Tadmor scheme
[61] is adopted to capture the shocks. The viscous flux vectors are
discretized using the central difference scheme. The time integra-
tion of the species governing equations is separated into chemical
reaction sub-steps and transport sub-steps based on the splitting
schemes [62]. The stiff ordinary differential equation (ODE) system
in chemical reaction sub-steps, which is an initial value problem
with given initial species mass fractions and temperature, is solved
using the OpenFOAM built-in ODE solver. The time integration in
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Fig. A1. The predicted errors of the flame lift-off length as the function of the grid
size in the mixing layer.

transport sub-steps uses the preconditioned bi-conjugate gradient
(PBiCG) method [63,64].
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