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A B S T R A C T

Chemical kinetic modeling is an integral part of combustion simulation, and extensive efforts have been
devoted to developing high-fidelity yet computationally affordable models. Despite these efforts, modeling
combustion kinetics is still challenging due to the demand for expert knowledge and high dimensional
optimization against experiments. Therefore, data-driven approaches that enable efficient discovery and
calibration of kinetic models have received much attention in recent years, the core of which is the high-
dimensional optimization based on big data. Evolutionary algorithms are usually adopted for optimizing
chemical kinetic models, although they usually suffer from high computational costs and are limited to a small
number of parameters. Meanwhile, gradient-based optimizations, especially the stochastic gradient descent
(SGD) methods, have shown success in developing complex models by training large-scale deep learning
models. Therefore, this work explores the applications of SGD-based optimizations in tuning mechanistic
kinetic models and learning hybrid kinetic models. We first showed that SGD-based optimizations could
substantially save computational cost compared to evolutionary algorithms when the number of kinetic
parameters in mechanistic models reached about one hundred. We then demonstrated that the SGD-based
optimization enabled us to use a neural network model to represent the pyrolysis of the Hybrid Chemistry and
optimize the associated hundreds of weights in the neural network. These proof-of-concept studies showed
that the SGD-based optimization is more efficient than evolutionary algorithms, is a promising approach for
developing chemical kinetic models with high dimensional parameters, and is capable of developing hybrid
mechanistic-machine learning kinetic models.
1. Introduction

The optimization of model parameters plays a critical role in the
development of chemical kinetic models. The widely adopted optimiza-
tion techniques in combustion kinetic modeling can be categorized into
heuristic algorithms and response surface techniques [1,2]. Heuristic
algorithms [3–8] such as genetic algorithms usually perform well with
less than 100 parameters and small datasets. This is due to fact that the
genetic algorithms require a large number of samples to explore the pa-
rameter space, and the computational cost of genetic algorithms scales
with the number of parameters and number of samples in the dataset.
Response surface techniques [9] alleviate the intensive computational
cost in performing target simulations with the proposed kinetic models
by building a function approximation that maps the model parameter
space to model predictions. Similar to heuristic algorithms, however,
response surface techniques are also limited to low dimensional model
parameter space [10] and small datasets, for the cost of building a
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response surface scales with the dimension of parameter space and the
number of quantities of interest. Meanwhile, recent development in di-
agnostic techniques and experiment automation [11] have significantly
increased the efficiency of experimental data generation and driven
combustion research into the big data regime. Therefore, optimization
methods that can handle large dataset effectively and efficiently would
greatly benefit the development of chemical kinetic models in addition
to high-throughput experimentation.

While seldom exploited in combustion modeling, optimization algo-
rithms based on stochastic gradient descent (SGD) has shown promise
in nonconvex optimization for complex nonlinear models, and SGD has
played a central role in driving the boom of deep learning in the last
decade [12]. Furthermore, various techniques have been developed in
conjunction with SGD to increase the generalization performance of
the optimized model. For instance, a modern deep learning optimizer
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not only focuses on minimizing the loss functions but also regularizes
the model to increase the extrapolation capability. Generalization to
different conditions and tasks is an important feature for classical
physics-based chemical models. With good generalization capability,
a chemical model that was developed based on canonical combustion
experiments should also work reasonably well in simulating the reac-
tions in practical combustion systems. Therefore, SGD is potentially not
only more efficient but also more generalizable compared to heuristic
optimization algorithms.

One of the major obstacles for exploiting SGD in combustion model-
ing is the lack of software ecosystems that can efficiently and accurately
compute the gradient of simulation output to model parameters. For
instance, the finite difference method (often termed the brute-force
method) usually suffers from both computational inefficiency, as the
cost scales with the number of parameters, and inaccuracy due to
truncation error. Conversely, stochastic gradient descent based on auto-
differentiation (AD) has shown both efficiency and accuracy in the
training of large-scale deep neural network models [12]. Many open-
source AD packages have been developed in the last decade, including
TensorFlow [13], Jax [14] backed by Google, PyTorch [15] backed by
Facebook, ForwardDiff.jl [16] and Zygote.jl [17] in Julia. Fortunately,
an open-source AD-powered differentiable combustion simulation pack-
age Arrhenius.jl [18] has been developed recently to enable differen-
tiable programming in combustion modeling. The package incorporates
combustion physics models into AD ecosystems in Julia and thus enable
auto-differentiation across combustion models, such as computing the
gradient of species concentrations with respect to the kinetic parame-
ters. This work thus employs Arrhenius.jl to explore the opportunities
of SGD-based optimization in modeling complex combustion kinetics.

In this work, we explore the capability of SGD-based optimization
in two optimization tasks: optimizing a mechanistic kinetic model and
learning a hybrid neural-mechanistic kinetic model. Optimization of
a mechanistic model is usually an integral part of calibrating kinetic
models against experimental data [6] or a reference model. For exam-
ple, optimizing an empirical kinetic model or an overly reduced kinetic
model against a detailed kinetic model [7,19]. It proceeds by tuning the
Arrhenius parameters to enable the predictions of the optimized kinetic
model to agree with the target detailed kinetic model.

For the hybrid kinetic model [20], a neural network model is used to
represent part of the kinetic process, e.g., the pyrolysis of large hydro-
carbon fuels, and thus one can train a neural network model to predict
the combustion process without providing a reaction template based on
expert knowledge. When simulating combustion processes, the neural
network takes the species concentrations and temperature as inputs and
predicts the production rate of each species, similar to a mechanistic
model. Learning a hybrid neural network/mechanistic model is a rela-
tively new adventure since it is computationally infeasible to train the
neural network model using conventional evolutionary optimization
algorithms. While SGD-based optimization should be able to handle the
computational load, the training is not trivial. Since the neural network
is coupled with the mechanistic model, one has to take the mechanistic
model into the gradient calculation as well. Previous work [20] has
assumed that all intermediate species are measurable and thus one can
decouple the neural network model from the mechanistic model during
training. However, this assumption often does not hold due to the
complexity of the chemical kinetics and limited diagnostic capability.
Here we adopt the Arrhenius.jl to enable computing the gradient for the
hybrid model and explore the possibility of learning the hybrid model
using SGD-based optimization.

This paper is structured as follows: we shall first briefly introduce
the numerical approaches in Section 2, including the package of Arrhe-
nius.jl Section 2.1 and the equations for various gradient calculations in
Section 2.2. We then present the application in optimizing mechanistic
kinetic model and hybrid neural network/mechanistic kinetic model in
Section 3. Finally, we draw conclusions in Section 4.
2

Fig. 1. Schematic showing the structure of the Arrhenius.jl package.

2. Numerical approaches

2.1. Arrhenius.jl

Arrhenius.jl [18] is built in the programming language of Julia to
leverage the rich ecosystems of auto-differentiation and differential
equation solvers. Arrhenius.jl does two types of differentiable pro-
gramming: (i) it can differentiate elemental computational blocks. For
example, it can differentiate the reaction source term with respect to
kinetic and thermodynamic parameters as well as species concentra-
tions. Arrhenius.jl leverages the language-wide auto-differentiation of
Julia programming language to do the auto-differentiation and thus
preclude the need of deriving the formula of the gradient/Jacobian
matrix. (ii) It can also differentiate the numerical solvers in various
ways, such as solving the continuous sensitivity equations [21] as done
in CHEMKIN [22] and Cantera [23] and in adjoint methods [24,25].
An example of this type of differentiation is computing the gradients of
species concentrations with respect to chemical kinetic model parame-
ters and initial compositions. The first type of differentiation is usually
the basis of the second type of higher-level differentiation. Arrhenius.jl
offers the core functionality of combustion simulations in native Julia
programming, such that users can conveniently build applications on
top of Arrhenius.jl and exploit various approaches to do high-level
differentiation.

Fig. 1 shows a schematic of the structure of the Arrhenius.jl package.
Arrhenius.jl reads in the chemical mechanism files in YAML format
maintained by the Cantera [23] community; the chemical mecha-
nism files contain the kinetic model, thermodynamic, and transport
databases. The core functionality of Arrhenius.jl is to compute the
reaction source terms and mixture properties, such as heat capacities,
enthalpies, entropies, Gibbs free energies, etc. In addition, Arrhenius.jl
offers flexible interfaces for users to define neural network models as
submodels and augment them with existing physical models. For exam-
ple, one can use a neural network submodel to represent unknown reac-
tion pathways and exploit various scientific machine learning methods
to train the neural network models, such as neural ordinary differential
equations [26–29] and physics-informed neural network models [30,
31]. One can then implement the governing equations for different
applications with these core functionalities and solve the governing
equations using classical numerical methods or neural-network-based
solvers, such as physics-informed neural networks [30]. Arrhenius.jl
provides solvers for canonical combustion problems, such as simulating
the auto-ignition in constant volume/pressure reactors and oxidation in
jet-stirred reactors. The governing equations implemented in the pack-
age is generally following those of CHEMKIN [22] and Cantera [23].
The package has also been validated against Cantera [23] in various
canonical programs, such as pyrolysis, ignition, and sensitivity analysis
of one-dimensional flame.
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In contrast to legacy combustion simulation packages, Arrhenius.jl
can not only provide predictions given the physical models but also
optimize model parameters given experimental measurements. By effi-
ciently and accurately evaluating the gradient of the solution outputs
to the model parameters, experimental data can be incorporated into
the simulation pipeline to enable data-driven modeling with deep
learning algorithms. Note that one can also achieve differentiable ca-
pability with existing combustion software, such as CHEMKIN [22]
and Cantera [23]. For example, ADIFOR [32] developed in 1970s can
be employed to do auto-differentiation over subroutines in CHEMKIN.
However, modern optimization and machine learning packages are
usually in high-level languages (e.g., Python and Julia [33]), and thus
one has to deal with the compatibility issues among modern high-
level languages and low-level languages (e.g., C++ and FORTRAN).
On the contrary, Arrhenius.jl can conveniently connecting combustion
modeling with optimization and machine learning without introducing
the complexity of low-level languages.

2.2. Gradient calculation

In this section, we briefly discuss how Arrhenius.jl can enhance var-
ious approaches for computing the gradient (sensitivity) in jet-stirred
reactors, shock tubes, and laminar flame experiments. In general, we
deal with two kinds of gradient calculations [22], i.e., steady-state
solutions and transient solutions.

Examples of steady-state solutions are the modeling of species pro-
files in jet-stirred reactors and steady laminar flames. Without loss of
generality, we can write down the governing equations in vector form
as

𝐹 (𝜙(𝛼); 𝛼) = 0, (1)

where 𝐹 corresponds to the residual vector, 𝜙 corresponds to the
solution vector, and 𝛼 corresponds to model parameters, such as the
kinetic, thermodynamic, and transport parameters. By differentiating
Eq. (1) with respect to the 𝛼, we obtain matrix equations for the
gradients.

𝜕𝐹
𝜕𝜙

𝜕𝜙
𝜕𝛼

+ 𝜕𝐹
𝜕𝛼

= 0, (2)

here 𝜕𝜙
𝜕𝛼 are the Jacobian matrices of the solution vector with respect

to model parameters. Normally, for optimization, we have a scalar loss
function defined as 𝐿(𝜙). The gradient of the loss function with respect
o model parameters can be readily achieved via

𝜕𝐿
𝜕𝛼

= 𝜕𝐿
𝜕𝜙

𝜕𝜙
𝜕𝛼

. (3)

With Arrhenius.jl, we can leverage AD to compute the two Jacobian
matrices of 𝜕𝐹

𝜕𝜙 and 𝜕𝐹
𝜕𝛼 . Unlike packages for calculating the analytical

Jacobian [34], efficient computation of the Jacobian can be achieved
without developing the analytical form. In addition, general AD enables
us to differentiate over neural network submodels, which is difficult
to implement using analytical approaches. If the solution variables are
discretized in a computational domain, e.g., the one-dimensional freely
propagating flame, one can readily leverage multi-threading to evaluate
the two Jacobians without complex code re-factorization using parallel
computing.

Examples of transient solutions are auto-ignition and fuel pyrolysis
in shock tubes. The governing equations are in the general form of
𝑑𝜙
𝑑𝑡

= 𝐹 (𝜙, 𝑡; 𝛼), (4)

here 𝑡 is the time. A natural approach to compute the gradient 𝑊 =
𝜕𝜙
𝜕𝛼 is solving the governing equations of 𝑊 , i.e.,

𝑑𝑊 = 𝜕𝐹 𝑊 + 𝜕𝐹 . (5)
3

𝑑𝑡 𝜕𝜙 𝜕𝛼
In addition to solving Eq. (5), Arrhenius.jl leverages various adjoint
sensitivity algorithms provided in DifferentialEquations.jl. For compre-
hensive comparisons of various algorithms in computing the gradient
of solution variables for transient solutions, readers shall consult [24].

In general, calculating the gradient for transient solutions involving
stiff chemical kinetic models is expensive, as computation time usually
scales with both the number of species and the number of parame-
ters. Meanwhile, global combustion behaviors, such as ignition delay
times (IDTs), are usually more experimentally accessible compared to
measurements of concentration profiles. Recent work [21,35–37] has
substantially advanced the algorithms for computing the gradient of
IDT. Therefore, the current work employs the sensBVP method [35],
which converts the initial value problem (IVP) to a boundary value
problem (BVP) by treating the temperature at ignition as a boundary
condition and the IDT as a free variable to solve. In other words, the
problem is converted from a transient problem to a steady-state prob-
lem, similar to the solution of a one-dimensional freely propagating
flame.

3. Results and discussion

We now present case studies using SGD-based optimization for
optimizing complex combustion kinetic modelings where the dimension
of parameters is too high for traditional optimization algorithms, such
as genetic algorithms.

3.1. Optimizing mechanistic kinetic model

Most skeletal chemical models are obtained by removing unimpor-
tant species and the associated reactions from the master model, leav-
ing the kinetic parameters of the remaining pathways unchanged after
the reduction. Various systematic mechanism reduction approaches
have been developed to generate skeletal mechanism [38–40]. There
has also been increasing interest in optimizing the kinetic parameters in
overly reduced reaction models to compensate for the error introduced
by over-reduction [7,19]. Regardless of the controversy of tuning the ki-
netic parameters during optimization, this approach has the potential to
produce a smaller model with higher fidelity than the ones obtained via
traditional reduction methods. The reduction-optimization approach
proceeds by sampling from target conditions and then optimizing the
reduced model to achieve similar predictions as the master mechanism
under all sampled conditions. This work thus takes this optimization
process as a case study for SGD-based optimization, i.e., using SGD-
based optimization to minimize the discrepancies between reduced
model and original detailed mechanism.

We demonstrate SGD-based optimization in reducing and optimiz-
ing two chemical models for natural gas and 𝑛-heptane, the master
models of which are the GRI3.0 mechanism [41] and the Nordin1998
mechanism [42], respectively. As previously discussed, overly reduced
models using classical reduction approaches with a large threshold or
intuition are firstly obtained, with the number of species in GRI3.0
reduced from 53 to 23, and that in Nordin1998 reduced from 41
to 34. The reduction is targeted for simulating natural gas engines
and diesel engines with the commercial software of Converge [43].
For GRI3.0, we first removed the following species using an iterative
reduction involving DRG [44], DRGEP [45], PFA [40], and sensitivity
analysis: C, CH3OH, C2H, C2H2, HCCO, CH2CO, HCCOH, NH, NH2,
NH3, N2O, HNO, CN, HCN, H2CN, HCNN, HCNO, HOCN, HNCO, NCO,
Ar, and CH2CHO. We then further removed the species of CH3CHO,
NO2, NO, NNH, N, C2H3, and CH2OH, CH by removing NO-chemistry
for Converge has a built-in NO module and following the reduction of
DRM19 [46]. The overly reduced model is denoted as SK23 with 23
species. For Nordin1998, the following species were removed based on
the reduction of GRI3.0: C3H5, C3H4, C2H6, CH4O2, CH3O2, CH3O, and
C2H2. The overly reduced model is denoted as SK34 with 34 species.
Note that the way to produce an overly reduced model can be regarded
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Fig. 2. Predicted ignition delay times and flame speeds for representative cases: (a-b) the mixture of natural gas/air using the master mechanism GRI3.0, skeletal mechanism SK23
and optimized SK23_OP. The ignition delay time was simulated using the fuel composition of CH4 : C2H4 : C3H8 = 0.85 ∶ 0.1 ∶ 0.05 by volume, pressure of 40 atm, equivalence
ratio of 0.9. The flame speed was simulated at 40 atm and 300 K, and (c-d) the mixture of 𝑛-heptane/air using the master mechanism Nordin1998, skeletal mechanism SK34 and
optimized SK34_OP. The ignition delay time was simulated at pressure of 40 atm, equivalence ratio of 1.2. The flame speed was simulated at 40 atm and 500 K.
as a hyper-parameters subject to explore. This work focuses on the
demonstration of the optimization algorithms, and we leave the optimal
choice of removed species to future studies. It should be noted that
one can also optimize an existing empirical semi-global reaction model
against a detailed model without consulting the skeletal mechanism
reduction.

The kinetic parameters of these overly reduced models were sub-
sequently optimized to retain the predictability of the master models.
The ignition delay times and laminar flame speeds (SLs) are utilized
as performance metrics to validate the overly reduced and optimized
models against the corresponding master models. As shown in Fig. 2,
for GRI3.0, SK23 over-predicts IDT at high temperatures and under-
predicts SL at all equivalence ratios. For Nordin1998, SK34 significantly
over-predicts the IDT at low temperatures, especially within the nega-
tive temperature coefficient region, while the flame speeds are hardly
affected by the reduction.

The optimization of the kinetic parameters of the over-reduced
models was conducted on all three Arrhenius parameters, namely, 𝐴,
𝑏, 𝐸𝑎. Although both IDT and SL could be selected as targets for opti-
mization, we only utilized the IDT for its relatively lower computational
cost than SL. Moreover, the top ten reactions selected based on the
sensitivity analysis for the SL were excluded from the optimization,
such that the optimization will not change these key reactions for SL.
We then randomly sampled 500 initial conditions covering a wide range
of mixture compositions and thermodynamic states for training. For
GRI3.0, the range of the pressure, initial temperature, and equivalence
ratios are 1–60 atm, 1100–2000 K, and 0.5–1.8, respectively, and the
fuel composition is set as CH4 : C2H4 : C3H8 = 0.85 ∶ 0.1 ∶ 0.05 by
volume. Similarly, for Nordin1998, the ranges of the pressure, initial
temperature, and equivalence ratio are 1–60 atm, 850–1800 K, and
0.5–1.5, respectively.

The datasets were split into training and validation datasets with a
ratio of 70:30. During each parameter update, one case was randomly
4

sampled to evaluate its IDT, and this process can be viewed as mini-
batching with the batch size of one. Instead of optimizing the Arrhenius
parameters directly, we optimized the relative changes of Arrhenius
parameters compared to their nominal values, i.e.,

𝑝 = [𝑙𝑛(𝐴∕𝐴0), 𝑏 − 𝑏0, 𝐸𝑎 − 𝐸𝑎0], (6)

where the subscript 0 refers to the base model. The units of 𝐸𝑎 are
specified as cal∕mol as we tried to minimize the changes in 𝐸𝑎. How-
ever, if one wants to ensure the change in 𝐸𝑎 is relatively comparable
to the change in 𝐴, one may specify the unit of 𝐸𝑎 as kcal∕mol, as a
change of 2 kcal∕mol in 𝐸𝑎 is close to 𝑒 times of change in 𝐴, such that
the changes in 𝐴 and 𝐸𝑎 will be balanced and avoid stiffness in the
parameter space.

The loss function was defined as the mean square error (MSE)
between the predicted IDTs in the logarithmic scale using the reduced
model and the master model:

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸
(

𝑙𝑜𝑔(𝐼𝐷𝑇 𝑠𝑘), 𝑙𝑜𝑔(𝐼𝐷𝑇 𝑚𝑎𝑠𝑡𝑒𝑟).
)

(7)

The gradients of IDT to kinetic parameters were computed using the
sensBVP method proposed in [35]. The Adam [47] optimizer with the
default learning rate of 0.001 was adopted. Weight decaying and early
stopping were employed to regularize the parameters, such that the
optimization prefers kinetic parameters that are close to their original
values. Fig. 3 shows the training history of the loss function and the 𝐿2-
norm of the model parameters for the Nordin1998 model. We trained
the reduced model for 100 epochs and stopped the training when the
loss function as well as the model parameters reached a plateau.

The performance of the optimized skeletal mechanisms is also
shown in Fig. 2. For the IDT, as targeted in the optimization, the
optimized models agree with the master models very well for both two
fuels. One interesting observation is that the optimized models also
work well for SL, although SL is not targeted for optimization. This
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Fig. 3. Training history of loss functions, 𝐿2-norm of model parameters. Regularization settings: weight-decay of 1e-4 with a learning rate of 1e-3.
could be attributed to several reasons. For GRI3.0, the optimization
compensates for the errors in the high-temperature chemistry seen in
the predicted IDT, and those re-calibrated high-temperature chemical
pathways lead to accurate predictions of SL. For Nordin1998, the
skeletal models already accurately predict the IDT at high temperatures
as well as the SL, and the optimization does not degrade the prediction
of SL thanks to the regularization. It is worth noting that the optimized
SK23 still under-predicts SL at fuel-rich conditions, potentially because
some of the sensitive reactions for fuel-rich conditions are not fixed dur-
ing optimization; further refinement of the fixed reactions is therefore
suggested. Furthermore, the optimization is computationally efficient.
Qualitatively speaking, previously employed genetic algorithms have to
be performed on clusters [19], while the current work was performed
on an ordinary workstation within an hour. In summary, these two case
studies demonstrate the ability of SGD-based optimization to optimize
complex reaction models with high accuracy, good generalization
capability, and high efficiency. Such optimization capability will help
augment current mechanism reduction techniques.

3.2. Optimizing hybrid neural network/mechanistic kinetic models

We then explore the optimization of hybrid neural network/
mechanistic kinetic model to develop a neural-network-based pyrol-
ysis submodel [20] within the HyChem model framework [48]. Our
recently developed Chemical Reaction Neural Network (CRNN) [28]
approach was employed to develop the neural network model for its in-
terpretability, such that the learned model complies with fundamental
physical laws and provides chemical insights, as well as its com-
patibility with large-scale combustion simulation package/software.
The conventional HyChem-based pyrolysis submodels require expert
knowledge on the chemical kinetics which takes years to develop. On
the contrary, the CRNN approach aims to autonomously discover the
reaction pathways and kinetic parameters simultaneously to accelerate
high-fidelity chemical model development. In the following demonstra-
tion, the CRNN-HyChem approach was utilized to model the jet fuel of
JP10.

As shown in Fig. 4, the CRNN-HyChem approach models the fuel
chemistry of JP10 with two submodels, similar to the original HyChem
concept. The CRNN submodel models the breakdown of JP10 fuel
molecules into smaller hydrocarbons up to C6H6, and the submodel for
C0-C6 describes the oxidation chemistry. For proof-of-concept, we chose
the same species in the original HyChem pyrolysis submodel [48] to be
included in the CRNN model; however, it should be noted that the such
chosen species can be treated as hyper-parameters to circumvent the
need for expert knowledge and achieve potentially better performance.
In the original CRNN approach [28], the Law of Mass Action and
5

Fig. 4. Schematic showing the structure of the CRNN-HyChem approach.

Arrhenius Law are enforced by the design of the structure of the neural
network. Reaction orders are assumed to be equal to the stoichiometric
coefficients for the reactants. In the present study, elemental conserva-
tion is further guaranteed by projecting the stoichiometric coefficients
into the elemental conservation space. For better convergence, the
stoichiometric coefficients for JP10 are fixed as -1, and during the train-
ing, the stoichiometric coefficients are regularized to achieve better
numerical stability. The training data were generated by simulating
the IDT using the original JP10 HyChem model. A wide range of
thermodynamic conditions were considered: pressures of 1–60 atm,
initial temperatures of 1100–1800 K, and equivalence ratios of 0.5–1.5.
In total, 500 thermodynamic conditions were randomly generated using
the Latin hypercube sampling (LHS) method. The dataset was split into
training and validation datasets with a ratio of 70:30, respectively.

The learned stoichiometric coefficients and kinetic parameters are
shown in Table 1, where negative and positive stoichiometric co-
efficients correspond to reactants and products, respectively. Quali-
tatively, most of the learned pathways are H-abstraction reactions,
which is consistent with the expert-derived HyChem models. However,
quantitatively, the learned pathways are not the same as those in
the HyChem model, and further efforts will be directed to extracting
physical insights from the learned pathways. Fig. 5 compares the
results of the learned CRNN model and the IDTs generated using the
original HyChem model [48], and they agree very well. The results
thus demonstrate the capability of SGD-based optimization in learning
CRNN models with hundreds of parameters, which is computation-
ally challenging with evolutionary algorithms. With the increasing
demand for rapidly developed kinetic models for new renewable fu-
els for screening and fuel design, hybrid neural network/mechanistic
modeling provides an elegant approach to autonomously derive ki-
netic models from experimental data. SGD-based optimization will play
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Fig. 5. Comparisons between the predicted ignition delay times using the learned CRNN model (Y-axis) and the HyChem model (X-axis) for both the training and validation
datasets.
a vital role in enabling such kind of autonomous model discovery
algorithms. While this manuscript focuses on learning the reaction
pathways from scratch, one can also develop a data-driven model
based on existing kinetic models for similar fuels and utilize SGD-based
optimization for the training, as demonstrated in [49].

4. Conclusions

This work explores SGD-based optimization for optimizing complex
chemical kinetic models, including both mechanistic kinetic models
and hybrid neural network/mechanistic kinetic models. The results
show that SGD-based optimization requires significantly less compu-
tational resources compared to traditional evolutionary optimization
approaches for hundreds of model parameters. Furthermore, SGD-based
optimization enables us to augment neural network models to represent
6

the unknown reaction pathways and optimize the involved hundreds
of parameters, which is computationally intractable with traditional
genetic algorithms.

We expect that SGD-based optimization could greatly facilitate the
integration of modern deep learning techniques into combustion mod-
eling, especially the physics-informed machine learning [50] that takes
the advantage of both physics-based and data-driven modeling. This
work is proof-of-concept study to take advantage of SGD-based op-
timization for optimizing combustion models and only deterministic
forward problems are presented. There are a lot of opportunities and
open challenges to extend the approaches to inverse problems and de-
sign of experiments using Bayesian inference which also heavily relies
on differential programming and SGD-based optimization [51,52].
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Table 1
Learned stoichiometric coefficients and kinetic parameters. Reaction orders are assumed to be equal to the stoichiometric
coefficients for reactants.
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