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A systematic approach is formulated for the uncertainty analysis of kinetic parameters on combustion
characteristics during skeletal reduction. The active subspace method together with sensitivity analysis
is first employed to identify extreme low-dimensional active subspace of input parameter space and
to facilitate the construction of response surfaces with small size of samples. An intermediate transi-
tion state during reduction is then defined such that the uncertainty change arising from uncertainty
parameter truncation and reaction coupling during reduction can be decoupled and quantified. The ap-
proach is demonstrated in the reduction of a 55-species, 290-reaction dimethyl ether (DME) mechanism,
with the rate constants characterized by independent lognormal distribution. Three representative skele-
tal mechanisms are identified for the uncertainty analysis, with each of the subsequent reduction yielding
significant errors in the single-stage and/or two-stage DME-air auto-ignition process. Results show that
sensitivity analysis can reduce the number of kinetic parameters from 290 down to 32, and the active
subspace method can further identify a dominant active direction within this 32-dimensional subspace,
which greatly facilitates the polynomial fitting for constructing the response surface of the ignition delay
times. The uncertainty analysis with the polynomial chaos expansion method shows that the reduction
from DME42 with 42 species to DME40 with 40 species has influential effect on the high-temperature
reaction pathway; while the reduction from DME55 to DME42 and from DME40 to DME30 mainly affects
the low-temperature pathway. In addition, the uncertainty change associated with parameter truncation
is shown to be proportional to the change in the most active direction, which could further accelerate
uncertainty analysis.
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1. Introduction ignition delay times (IDTs) and laminar flame speeds in simple

reactors and flames have been systematically studied [2]. Re-

Predictive reacting flow simulations often require well-designed
chemical kinetics models as a foundation. Over the past several
decades, substantial advance of detailed chemical mechanisms
for hydrocarbon fuels has been made, and the number of species
and chemical reactions involved has dramatically increased with
the corresponding increase in the complexity of fuel molecules
considered [1]. Accuracy of such kinetic models can be assured,
in principle, by systematic studies of individual rate coefficients.
However, many sources embedded with experimental uncertain-
ties in the rate parameters inevitably bring uncertainties into the
kinetics models. The uncertainty quantification (UQ) of chemical
kinetics on the prediction of quantities of interests (Qols) such as
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sponse surface methods such as those in high dimensional model
representation (HDMR) [3,4] and polynomial chaos expansion
(PCE) [5,6] have been employed to accelerate the uncertainty
quantification (UQ) process.

The propagation of kinetic uncertainty in mechanism reduction
and the subsequent turbulent combustion simulations has been
gaining increasing attention [7,8]. The presence of a large num-
ber of species and a wide range of chemical time scales makes
it expensive to directly apply detailed mechanisms in multi-
dimensional simulations. Skeletal mechanisms for hydrocarbon
fuels, which consist of a small subset of species and reactions from
detailed ones to capture the dominant reaction pathways, can now
be systematically obtained through the methods of directed rela-
tion graph (DRG) [9], computational singular perturbation (CSP)
[10], sensitivity analysis [11,12], etc. Over the past years, much
attention has been drawn on the accuracy comparison for the
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Qols, between the detailed and skeletal ones with fixed kinetic
parameters.

In view of the above considerations, it is of both scientific and
practical interests to investigate the dependence of uncertainty in
the prediction of Qols on the elimination of species and reactions
during the reduction process; in other words, the dependence of
uncertainty on the size of skeletal mechanisms. Xin et al. [8] first
studied this dependence by analyzing the uncertainty change in
the skeletal reduction of n-butane and i-butane mechanisms, in
which sensitivity analysis is employed to identify the important
reactions and thus reduce the number of kinetic parameters for
propagating uncertainty. It is revealed that the uncertainty de-
creases monotonically with the model size only when the coupling
among reactions is weak. Note that sensitivity analysis alone in
[8] can only reduce the number of important kinetic parameters to
10-30, which is still computationally intractable as the computa-
tional models for Qols are expensive. Moreover, the analysis with
PCE coefficients employed cannot decouple the uncertainty sources
from parameter truncation and reaction coupling explicitly.

In this study, the methods of active subspace and transition
state analysis are proposed for the efficient and quantitative
uncertainty analysis in mechanism reduction. The active subspace
method together with sensitivity analysis is employed to identify
low-dimensional active subspace of the input parameter space
and to construct the response surface with sufficiently small size
of samples. To quantify the uncertainty change during skeletal
reduction, an intermediate “transition state” during reduction is
defined, in which the truncated reactions are maintained but with
their uncertainties in kinetic parameters being neglected, such
that the uncertainty change is decoupled into contributions from
parameter truncation and reaction coupling, respectively. That is,
the transition state has the same set of species and reactions as
the detailed one, but the kinetic parameters for the truncated
reactions during reduction are fixed at the nominal values without
accounting for uncertainties. The uncertainty analysis will be
demonstrated in the skeletal reduction of a 55-species dimethyl
ether (DME) mechanism [13].

2. Methodology

In this section, the four major components for uncertainty
propagation in mechanism reduction are described. Skeletal re-
duction with DRG is first briefly reviewed for the generation of a
series of skeletal mechanisms for uncertainty analysis, followed by
the description of uncertainty characterization of kinetic parame-
ters. The kinetic parameter reduction via active subspace method
is then introduced to accelerate the uncertainty propagation from
the parameter space to the Qol space. With uncertainties of the
detailed and skeletal models acquired, the uncertainty analysis via
transition state is elaborated in Section 2.4.

2.1. Skeletal mechanism reduction

The 55-species, 290-reaction dimethyl ether (DME) mechanism
of Zhao et al. [13] is used as an example to illustrate the uncer-
tainty analysis in mechanism reduction. In this study, mechanism
reduction is performed at the nominal kinetic parameters, then
the uncertainty propagations for the Qols are analyzed among
the mechanisms with different levels of details. That is, model
reduction and model uncertainty analysis are decoupled for the
convenience of analysis. It is also worth mentioning that this study
is of practical interest for the mechanism reduction methods that
account for model uncertainties since it is necessary to analyze
uncertainty changes during the reduction process.

The DRG method [9] is employed to generate representative
skeletal mechanisms of different sizes. Note that DMES55 and the
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DRG method are employed for the convenience of demonstra-
tion, and the proposed approach is applicable to other detailed
mechanisms and skeletal reduction methods. The DRG eliminates
unimportant species through reaction flux analysis. For a given
thermochemical state, the pair-wise correlation coefficient rp g is
calculated to quantify the influence of eliminating species B on
the reaction rate of species A,

_ Max |vp jwidp

- 1
AB max |va j;l M
5..— |1 ithreaction involves B

BI= 10 otherwise

where w; is the net reaction rate of the ith reaction and v ; is the
stoichiometric coefficient of species A in the ith reaction. Species B
is regarded as important to species A if r4p > &pgrg and cannot be
eliminated if species A is important. Species strongly coupled, to
the user-specified search initiating or starting species, directly or
indirectly, are retained in the skeletal mechanism. More algorithm
details are given in [9].

Note that model uncertainty and model reduction are in-
herently coupled with each other if one also considers the
uncertainties in kinetic parameters during mechanism reduction,
as detailed in [14]. One possible approach for considering param-
eter uncertainties during DRG reduction is to generate samples
in the parameter space and obtain a weighted r4z with a proper
filter. Then skeletal reduction can be performed based on the
weighted rg. Recall that the focus of this study is not to formulate
a reduction method that accounts for parameter uncertainty and
mechanism reduction is currently performed at nominal kinetic
parameters without accounting for their uncertainties.

The DRG method uses representative thermochemical data
for reaction flux analysis, which may draw from solutions of
auto-ignition, perfectly stirred reactors and laminar premixed
flames etc., under relevant conditions [9]. In this study, the sample
compositions for DRG reduction are obtained from the autoigni-
tion of DME/air mixtures with the DME55 mechanism covering
the conditions of 650K< Tp <1200 K, 1 atm < p < 20 atm, and
0.5 < ¢ < 1.5. With a given reduction threshold epgg, a skeletal
mechanism consists of all the retained species and reactions from
individual sample compositions. In the reduction process, the
Qol considered is the ignition delay time (IDT) that has practical
importance especially in internal combustion engines. DME is one
of the simplest hydrocarbons exhibiting the negative temperature
coefficient behavior [15-17]. It is employed for demonstrating the
uncertainty propagation in the reduction of hydrocarbon mecha-
nisms with complex dynamics. Note that even though the sample
data from autoignition processes are employed for DRG reduction,
the skeletal mechanisms obtained are also validated with laminar
premixed flames in Section 3. The uncertainty analysis approach
is general and could be applied to other reduction methods with
different representative sample thermochemical data.

2.2. Uncertainty characterization of kinetic parameters

For homogeneous adiabatic, isochoric autoignition, the set of
governing ordinary differential equations (ODEs) can be rewritten
in a compact form as

do

5 =F@:k (2)
where ¢(t), of dimension Ns + 1, is the composition vector consist-
ing of species molar concentrations and temperature, and k, of di-
mension d, is the vector of forward reaction rate constants of the d
elementary reactions involved in a mechanism. See Appendix A for
more details. Eq. (2) is integrated with a stiff ODE solver in Cantera
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[18] with a given chemical mechanism. The IDT, 7, is defined as the
time instance when the temperature gradient reaches maximum.
With a given distribution for the rate constants k, the PDF distribu-
tion of the Qol can be obtained and it is very often characterized
by the mean value and its uncertainty, i.e., root mean square value.

Uncertainties in Arrhenius parameters A, b and E, are system-
atically studied in [19,20] and the uncertainties of rate coefficient
k from the pre-exponential factor and activation energy are in the
same order and correlate well to each other. Thus, in this study
only the uncertainty in A factor is considered and modeled by
the uncertainty factor UF for the demonstration of uncertainty
propagation in mechanism reduction. Furthermore, the method
developed can be applied to the uncertainties in temperature
exponent and activation energy if needed.

Following [6,21], the rate constants in this study are assumed
to be independent log-normal distributions. Once centered and
normalized as x;, they follow the standard normal distributions,

_ In ki/kiO
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where k; is the ith reaction rate coefficient, kiy and UF; are its
nominal value and uncertainty factor, d is the number of ele-
mentary reactions and is also the dimension of the original input
parameter space. The simulation inputs are then represented as a
d-dimensional random vector X = [X;, ..., x4]T. Denote the dis-
tribution of x as 7y, which follows the multi-dimensional normal
distribution. The deterministic forward combustion model maps
the input parameters to the Qols, and the map to a specific Qol is
denoted as a function f(x). For the autoignition study, the forward
combustion model is Eq. (2) and the Qol is the IDT.

In general, uncertainty of the Qol can be quantified by Monte
Carlo (MC) methods, where each sample in the parameter space
corresponds to a response in Qol. With sufficient samples, the
distribution of f(x) can be obtained. However, due to the slow
convergence of the MC method, a large number of samples are of-
ten required, particularly when the number of kinetic parameters
is large.

2.3. Kinetic parameter reduction via active subspace method

Various response surface techniques have been adopted in con-
junction with MC, in which one uses a few carefully selected runs
of the expensive model to construct a cheaper response surface
that is subsequently sampled for MC. However, building response
surfaces requires a large number of runs of the expensive model
when the number of input parameters is large. In this study, an
integrated use of sensitivity analysis and active subspace (AS)
[22,23] is proposed for the kinetic parameter reduction, in which
sensitivity analysis is first employed to identify the important
reactions and construct the reduced parameter subspace, and AS
is then used to identify the important directions in the reduced
subspace. Note that unlike sensitivity analysis that identifies the
important individual input parameters, the AS approach identifies
the important directions, i.e., linear combinations in the input
parameter space, and can lead to further dimension reduction and
requires much fewer runs of the expensive model.

For sensitivity analysis, the sensitivity of IDT, S;; = 7 ok
obtained with the brute-force finite difference approach. The
accuracy of the sensitivity vector can be validated against those
obtained from analytical adjoint method by inner product of the
two vectors [24]. A subset of important reactions is then obtained
according to the sensitivity magnitudes of individual reactions. The
elimination of unimportant reactions will incur truncation error in
the sensitivity vector, which is defined as

ki ot g

€s = 1 _SiTmpSfull

(4)
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where Sy, is the full sensitivity vector and Sy, only consists of
the components corresponding to the important reactions. In this
study, for a given mechanism, a minimum set of most sensitive
reactions are first obtained for each thermochemical condition,
which maintains the magnitude of the selected sensitivity vector
being no smaller than 99% of that for the full one. The final
set of important reactions for a given mechanism is the union
of all the sensitive reactions for itself and its derived skeletal
mechanisms under all thermochemical conditions. Therefore, the
important reactions identified have accounted for the wide range
of thermochemical conditions. At the meantime the truncation
error €5 is kept smaller than 1% for each mechanism under all
tested thermochemical conditions. With sensitivity analysis, for the
DMES55 mechanism, only 32 out of the 290 reactions are identified
as important (see Appendix B), which significantly reduces the
cost for subsequent active subspace analysis.

2.3.1. Active subspace and Monte Carlo sampling

The active subspace method, as detailed in [22,25], seeks an
r-dimensional subspace that describes most of the variation of
function f. The idea is to find a low-dimensional approximation of

f as
fFE) ~nx), x= STx, (5)

where 7 is a function of the r-dimensional input &, with r < d, and
S is a semi-orthogonal matrix of size d x r. The active subspace
is defined as span(S). One way to identify the active subspace is
to perform an eigenvalue decomposition of the matrix C, defined
as the expectation of the outer product of the gradient V f with
itself, i.e.,
c= f (V) (V) edx = WAWT (6)
Note that C is symmetric, positive semi-definite, and of size
d x d. The unitary matrix W consists of the d eigenvectors
wi,..., wy and A is a diagonal matrix whose components are
the eigenvalues Aq, ..., A4, sorted in descending order. If there is
a gap in the eigenvalues, meaning A; > A, 1, then the function f
varies mostly along the first r eigenvectors. The first r eigenvectors
are selected to span the active subspace § = [wq, ..., w;]. The ac-
tive subspace can be interpreted as the average gradient of the Qol
over the uncertain parameter space. Then one can build a response
surface, RS(x;) with the active variables x; = STx as inputs. Denot-
ing it by the function 7, one has f(x) ~ n(x;) = RS(x;). In practice,
the integral of the gradients’ outer product in the parameter space
is obtained by Monte Carlo sampling with M~ d x Ind samples
and the error in the estimated eigenvalues and eigenvectors due to
insufficient number of runs can be estimated with bootstrapping
method [22]. Various response surface techniques can be applied
to the low-dimensional active subspace once it is identified. In this
study, polynomial fitting is employed to construct the response
surface of the IDTs.

2.4. Uncertainty analysis in mechanism reduction via transition state

2.4.1. Uncertainty quantification for individual mechanisms

In this study, the PCE method [6,21] is employed for the uncer-
tainty quantification of individual mechanisms. PCE can explicitly
yield the uncertainty of a polynomial equation with the probability
distribution function (PDF) of inputs known as a prerequisite and,
compared to MC, it does not incur any statistical error caused by
sampling. Using PCE in conjunction with polynomial fitting for
the response surface, a model prediction y as a function of x; is
expressed in terms of the Taylor series

¥ =n&)=yo+8 % +xTHx, + h.ot, (7)
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Input parameters UuQ Uncertainty
Detailed model  [ka[k]--[kq] Active subspace Ora
+
Transition state  [ky[k,[-~:[kd => [Response surface| => ;¢
fixed +
Skeletal model  [ky|-+[ 4] MC or PCE Ors

Fig. 1. Illustration of uncertainties for detailed model, transition state and skeletal
model, where the one for transition state is obtained by fixing rate coefficients of
eliminated reactions.

where g = Vy is the gradient of y, H= %](Vy) is the Hessian
matrix, J is the Jacobian operator, and h.o.t represents higher
order terms. Noted that g and H in the polynomial expansion
show the effects of first- and second-order sensitivities and can
be obtained by sensitivity analysis, as detailed in [2]. In this work,
the polynomial expansion 7(x;) is trained by ordinary least square

regression. For kinetic uncertainty, x; = lffr"l/L’;iFU ~N(0, 1) and the
3 i

active subspace S is orthogonal, which indicates x, = STx still
follows multi-dimensional normal distribution. Thus, when %, =0
(a null vector), y = yo. The uncertainty of the response surface, i.e.,
oy, is related to the uncertainty in X, and is given by

o =E[yy"] - E’ly] = g"g + 2tr(HH) (8)

where the first and second terms respectively represent the un-
certainty from the first- and second-order parts of the response
surface.

2.4.2. Uncertainty propagation in skeletal reduction: truncation and
coupling

Assume that the number of elementary reactions has been
reduced from d in the detailed mechanism to s in the skeletal
mechanism. The input parameters of the detailed and skeletal
mechanisms are x; of dimension d, and xs of dimension s, re-
spectively, with each rate parameter following a standard normal
distribution. In conjunction with the active subspace method,
the uncertainty of response surfaces for the detailed and skeletal
models can be written as

0ra =0 [1ra(Sqa)] (9)

Ors =0 [nr,s(szxs)] (10)

where S; and S; span the active subspaces of the detailed and
skeletal mechanisms, respectively.

The uncertainty propagation during mechanism reduction is
attributed to parameter truncation and reaction coupling. To de-
couple these two effects, as illustrated in Fig. 1, a transition state
is defined such that the input parameter x; is still d-dimensional,
but only the rate parameters of the retained reactions follows the
same normal distributions as the ones in the detailed mechanism.
The rate parameters of the eliminated reactions are kept as nom-
inal values for eliminating uncertainty. Then the input parameter
for the transition state is given by x; = Px4, where the components
of the d x d diagonal transformation matrix P is one for the corre-
sponding retained reactions and zero for the eliminated reactions.
The uncertainty in the transition state is denoted as oy, ¢, which is
obtained with x; as the response surface input for the autoignition
model with the detailed mechanism. The uncertainty change from
the detailed mechanism to the transition state is therefore due to
the truncation of uncertainty for the eliminated reactions.

With the truncated active subspace being defined as PSy, the
uncertainty of the transition state can be represented as

Ort :G[Wr.d((PSd)T(de) )] (1)
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Fig. 2. The dependence of the number of retained species Ny and the maximum
incurred error in IDTs on the reduction threshold epps. Also marked are the three
representative mechanisms for uncertainty analysis.

With the transition state, the uncertainty change due to reac-
tion coupling, i.e., the effect of the eliminated species/reactions on
the retained species and reactions, can be straightforwardly ob-
tained as oy — ors. The relative influence of parameter truncation
and reaction coupling can be measured by the ratio

0r.a — Orell

e =
‘ ”Ur,d —0ortll + o — orsll

(12)

A large r; means that the uncertainty change mainly arises from
uncertainty parameter truncation, otherwise reaction coupling is
dominant for uncertainty change during the reduction process.

3. Results

Skeletal mechanisms of different sizes have been obtained
using DRG implemented in PyMars [26-28], covering initial tem-
perature of 650 K < Ty < 1200 K, pressure of 1 atm < P < 20 atm,
and equivalence ratio of 0.5 < ¢ < 1.5. The starting species for
DRG are the fuel species CH30CH3 and the oxidizer species O,.
The inert species N, is also retained in the skeletal mechanisms.
At each threshold, a subset of reactions will be eliminated and the
remained reactions constitute an intermediate skeletal mechanism.
The maximum error of the Qol between the skeletal mechanism
and detailed mechanism under all reference thermochemical
conditions is denoted as errmax.

Figure 2 shows the dependence of the number of retained
species Ny on the reduction threshold epgg, together with the
maximum incurred error errmax in IDTs from the corresponding
mechanisms. Note that with about ten species eliminated, the
maximum error reaches up to 1%, which implies DME55 is a rel-
ative compact mechanism and contains few non-essential species.
The jumps in the number of species at certain thresholds are due
to the elimination of strong coupled species, thus the threshold
for a skeletal mechanism is often selected either before or after
such jumps, as detailed in [9].

As shown in Fig. 2, three representative skeletal mechanisms
along the curve of maximum error are chosen for the analysis of
their uncertainty propagation. The information is summarized in
Table 1 with the eliminated species from the preceding mech-
anism being listed. Note that significant increase in the error
for IDTs has been observed when species C;Hs; and C;Hg are
further removed from DME42 and N; is reduced from 42 to 40
in DME40. In contrast, no noticeable increase in the maximum
error is observed when ten additional species: CH,, CH,(S), CoHy,
C,Hs, CyH4, HCCO, OCHO, CH30CHO, CH30CH,0, CH30CH,0,H,
are removed from DME40 and the number of species is reduced
from 40 down to 30 in DME30.
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Table 1
Three representative skeletal mechanisms obtained by DRG.
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Ng Ng er'T'max Species eliminated from the preceding one
DME42 42 208 4.4% C,H, CH,CO, HCCOH, CH,HCO, CH5CO, CH3CHOH, C,H40H, CH3CH,0, C;Hs0H, CH;0CH,0H, HOC,H40,, AR, HE
DME40 40 192 56.8% C,Hs, CoHg
DME30 30 123 56.8% CH3, CH,(S), C3H,, CoH3, CoH4, HCCO, OCHO, CH30CHO, CH30CH,0, CH;0CH,0,H

¢ =1.0,P = latm

¢ =1.5,P=latm

—4
0 ¢ =0.5,P = 10atm ¢ =1.0,P = 10atm ¢ =1.5,P = 10atm
= —=—DME55 —v—DME40
5 -e--DME42 ---A--DME30
@)
=2 s ﬂ/.
%D .
—4 1
0 1 ¢ = 0.5, P = 20atm

1.4

1.2
1000/T (K1)

Fig. 3. The dependence of IDTs on initial temperature, equivalence ratio and pressure of DME/air mixtures.
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Fig. 4. Laminar flame speeds of premixed DME/air mixtures calculated with the
detailed and skeletal mechanisms. The temperature of unburnt mixtures is 300 K.

Figure 3 demonstrates the accuracy of the skeletal mechanisms
by showing the computed IDTs. As shown, significant errors are
observed in general for the autoignition process under relatively
high initial temperatures when reducing DME42 further down to
DME40. The skeletal mechanisms are also validated against the
detailed one by comparing the computed laminar flame speeds,
which are not included in Qols during reduction. Figure 4 shows
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the computed laminar speeds over a wide range of pressures and
equivalence ratios for the unburned DME/air mixtures of 300 K.
The computed flame speeds from DME42 agree well with those
from DMES55, but noticeable differences between DME 40, DME30
and DME55 are observed, particularly under low-pressure and
fuel-rich conditions. Nevertheless, even only IDTs are considered
as Qols during the reduction processes, the incurred relative errors
in laminar flame speeds are less than 10% for all the tests shown
in Fig. 4. The observations are consistent with the ones in Ref [2].
Hence only IDTs being selected as target for reduction is sufficient
for current study.

To further examine the difference among the mechanisms,
Figure 5 shows the computed temperature profiles for representa-
tive one-stage and two-stage DME-air auto-ignition process, under
two representative conditions. As shown in Fig. 5a, the reduction
from DME42 to DME40 yields significant error in the predic-
tion for high-temperature auto-ignition, which indicates that the
species CyHs along with C,Hg and related reactions are crucial for
high-temperature chemistry. The eliminated reactions from DME42
to DME40 are listed in Table 2 and show that the methyl radical
branching reaction R52, which is important in high-temperature
chemistry, is removed. And most of C,Hs-containing reactions in
Table 2 are related to C;Hg. Once CyHg is removed, C,Hs that
strongly coupled with C;Hg will be removed automatically. In
contrast, as shown in Fig. 5b, the reductions from DME55 to
DME42 and from DME40 to DME30 lead to noticeable error in
the first-stage ignition process, implying that the removed species
and reactions have influential effects on low-temperature chem-
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Fig. 5. The temperature profiles from stoichiometric DME-air auto-ignition with
different mechanisms. Symbols represent the ignition point. (a) is under P = latm
and Ty = 1200K, of which the high-temperature pathway is dominant, and (b) is
low-temperature pathway controlled with P = 10atm and T, = 650K.

Table 2

The eliminated reactions from DME42 to DME40.
Index Reaction
R52 2CH3 (+M) [=] CoHg (+M)
R94 2CH;3 [=] C;Hs + H
R103 CyHg + H [=] CHs + Hy
R104 CyHg + O [=] CoHs + OH
R105 C,Hg + OH [=] C;Hs + H,0
R106 CyHg + O3 [=] CoHs + HO,
R107 CyHg + HOy [=] CoHs + Hy0,
R108 CyHg + CH;3 [=] CoHs + CHy
R109 CHs + H (+M) [=] CoHg (+M)
R110 CyHs + H [=] CHy + Hy
R111 CyHs + O [=] CH,0 + CHj3
R112 CHs + 0, [=] C;Hy + HO,
R113 2C,Hs [=] CoH4 + CoHg
R114 CyHs + HCO [=] CuHg + CO
R115 CyHs + O [=] CH3HCO + H
R117 CHy + H (+M) [=] CoHs (+M)

istry pathway. Recalling that the main focus of this study is to
investigate the uncertainty propagation in skeletal reduction using
representative mechanisms, instead of developing accurate skeletal
mechanisms for combustion simulations. Thus, the three skeletal
mechanisms, with noticeable errors either in high-temperature
pathway or low temperature pathway, are generated and used to
demonstrate the uncertainty analysis.

3.1. Dimension reduction of kinetic parameters

Over the range of equivalence ratio, pressure and initial temper-
ature considered, for the DME55 mechanism, with sensitivity anal-
ysis, only 32 of the 290 reactions are identified as important and
the corresponding kinetic parameters are identified important (See
Appendix A for the list of all the important reactions). The impor-
tant reactions are compared and examined with previous sensitiv-
ity analysis in [29-32], and good consistence in the key reactions
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Fig. 6. The sensitivities of IDTs from the brutal force and the adjoint methods for
DMES55 under {¢, P, To} = {1.0, 1atm, 1000K}. The perturbation factor is 5 x 103
for the brutal force method.

are obtained. Note that R52 is related to C;Hg and no reaction
related to CyHs is identified to be important, which is consistent
with the analysis in the reduction process from DME42 to DME40.

The accuracy of sensitivity vectors obtained with finite differ-
ence is validated with those from the adjoint method. As shown
in Fig. 6, the inner product of the two unit sensitivity vectors is no
smaller than 0.99 for almost all the tests considered. This verifies
the accuracy in the finite difference approach for computing
sensitivity vectors.

Considering that the sensitivity vector may vary with different
kinetic parameters, further analysis is performed for more random
samples in the uncertainty space. It confirms that the 32 selected
parameters maintain important and sufficient, since for almost all
samples the length of sensitivity vector in the 32 dimensions is
larger than 99% of the full sensitivity vector. In the following, the
active subspace is constructed within the parameter space only for
the important reactions identified by sensitivity analysis.

With the identified 32 important kinetic parameters, for each
thermochemical condition {¢, P, Ty}, the analysis of active subspace
has been performed. The uncertainty factors UF = 5 are employed
for all the kinetic parameters for demonstration. Note that if the
uncertainties for certain reactions have been well investigated
and have more appropriate uncertainty factors, one can directly
incorporate this information without any difficulty. For the au-
toignition of stoichiometric DME/air mixture with P = 10atm and
To = 1000K, the corresponding eigenvalues of matrix C estimated
using M = 400 samples are shown in Fig. 7a. It is seen that the
first eigenvalue is much larger than the second one, implying the
existence of a one-dimensional active subspace. This is further
confirmed by the summary plot of Fig. 7b, which shows the distri-
bution of IDTs along the first active variable, i.e.,w{x. The IDTs lie
close to a one-dimensional curve and the scattering in the direc-
tion orthogonal to the active direction is small. The components of
the active direction, i.e., the first eigenvector, are shown in Fig. 7c.
The corresponding values are plotted against the original reaction
index instead of the order in the 32 important reactions. The
most sensitive reactions are three CHs-related reactions, i.e., 2CHs
(+M) = CoHg + M (R52), CH30CH, = CH,0 + CH3 (R248) and
CH3 + CH30CH; = CH30CH, + CH4 (R242). Note that the largest
positive value in R52 corresponds to the recombination of methyl
radical, which is consistent with the major importance of methyl
radical branching reactions in the DME kinetics [26,27]. Thus, the
removal of CHg and C;Hs in DME40 results in significant error. In
addition, R242 is the most important H-abstraction reaction, and
R248 is an important B-scission process to form formaldehyde
and the methyl radical.
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Fig. 7. (a) The eigenvalues of the corresponding matrix C; (b) the summary plot
of the IDT being plotted against the active variable; (c) the individual component
(with magnitude being greater than 0.05) of the first active direction.

3.2. Uncertainty propagation in mechanism reduction

For conservative consideration, the first three active directions
are chosen to span the active subspace. Then a three-dimensional
response surface based on second-order polynomial fitting is built
for individual mechanisms under each thermochemical condition
{¢, P, To}. With half of the data for training and the other half for
validation, the accuracy of response surface is validated as shown
in Fig. 8a, with the prediction of response surface versus the real
data lies close to the linear relationship line. Figure 8b shows the
distribution of IDTs along with w{x, in which the black dots are
50,000 samples for the MC method to obtain the statistics of IDTs.
Note that all samples lie close to the one-dimensional curve of
training data, which substantiates the accuracy and effectiveness
of the response surface. The PDF of IDTs are shown in Fig. 8c.
There is good agreement between PDFs of the training data and
the predictions, which demonstrates the sufficient accuracy of
the three-dimensional active subspace in propagating the kinetic
uncertainty. To further confirm the accuracy of active subspace
and response surface method, 10,000 individual Monte Carlo
samples in the kinetic parameter space are solved by Cantera and
then compared with Monte Carlo samples propagated by response
surface. As shown in Fig. 8d, the relative error for the uncertainty
o is smaller than 1%, and the relative error for the mean value is
smaller than 0.1%.

Note that the active subspace is constructed within the param-
eter space only for the important reactions identified by sensitivity
analysis. The threshold value for keeping important reactions after
sensitivity index may have impact on the active subspace and
subsequent analysis. Here the dependence of uncertainty analysis
on the truncation error of the sensitivity vector is investigated.
To achieve so, sensitivity analyses S, ; = k0t are first performed

T dk;
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Fig. 8. The training and validation progress, (a) the training and validation; (b) the
w; projection of 50,000 samples of response surface; (c) PDF plot of samples, under
{¢, P, To} = {1.0, 10atm, 1000K}; (d) comparison between PDF plots of MC sam-
ples propagated by response surface and MC samples integrated by an ODE solver.

at nominal parameters for all the thermochemical conditions
considered, and reactions are then sorted by their corresponding
sensitivities in magnitude, i.e., sensitivity index. Then the depen-
dence analysis can be performed for individual thermochemical
condition.

For demonstration, Fig. 9a shows the incurred errors in the
active direction wq, the mean u, and r.m.s o, of logo(IDT) against
the truncation error in sensitivity vector for the condition of ¢ =1,
P = 1atm and Ty = 1200K. This is obtained by first simulating 6400
independent random auto-ignition samples in kinetic parameter
space with full sensitivities under this particular thermochemical
condition. A series of sensitivity vectors are then obtained by
sequentially removing the unimportant reactions according to
their sensitivity indexes. For each individual sensitivity vector, the
truncation error €5 can be computed accordingly with Eq. (4). And
the active subspace and response surface can be built with 400
random samples. The errors in the first active direction w;, mean
value ur and r.m.s o, of the response surface can be obtained
by comparing against those built from all 6400 samples with full



X. Su, W. Ji and Z. Ren

10°

1072

Prediction Error

107" 1

750 1

500 A

PDF of g

250 1

1072 107!

€s

1073

Fig. 9. (a) The incurred errors in the active direction w; (black square), the mean
1r (red circle) and r.m.s o, (blue triangle) of log,, (IDT), against the truncation error
€s in sensitivities, (b) the PDF distribution of the sensitivity truncation errors in
kinetic parameter space, under the condition of ¢ =1, P = latm and Ty = 1200K.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

sensitivity vector. For each sensitivity vector, the validation process
is repeated ten times independently to avoid the potential bias
from random samples. It is clear from Fig. 9a that the error in w;y
correlate well with the truncation error €5 and it can be neglected
when truncation error is smaller than 1%. The predicted mean
value p, with 400 samples is generally accurate with errors being
smaller than 0.1% for almost all tests. The error in o comes from
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Fig. 10. The evolution of PDFs for IDTs (centering around the mean values) during
the reduction from DME42 to DME40. For high-temperature pathway in (a), the
uncertainty decrease from detailed model o, 4 = 0.1534 to transition state o,; =
0.1422 and to skeletal model 0,5 = 0.1343; and for low-temperature pathway in
(b), the uncertainty change is insignificant with 0,4 = 0.1473, o, = 0.1478 and
o5 = 0.1454.

two contributions. As shown in Fig. 9a, when the sensitivity vector
is sufficiently accurate (i.e., with €5 being less than 5%), the error
in or results from a finite number of Monte Carlo samples for
constructing response surface and it is confirmed to be less than
2.5% (as indicated by the black dashed line). Noted that the mean
prediction error of o is around 1%, among repeated sampling tests
in the parameter space. When the sensitivity truncation error is
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Fig. 11. Uncertainties in IDTs (in log10) for DME42, DME40 and the transition state from DME42 to DME40, for DME-air autoignition. o, 4 (black line), o+ (black dashed
line), or s (red line) represent the uncertainties in IDTs for DME42, transition state from DME42 to DME40, and DME 40, respectively, under each thermochemical condition.
r¢ (the red line with symbol) represents the relative contribution of parameter truncation for uncertainty change. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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significant, the error in o, will grow with the sensitivity error, and
moreover grow in line with the error in active subspace.

Figure 9b shows the PDF of the sensitivity truncation errors of
random samples in the parameter space. It shows the maximum
error is less than 1% and this will incur less than 2.5% error
in uncertainty analysis as shown in Fig. 9a. This confirms that
the first layer of parameter reduction by sensitivity analysis in
this study is adequate. Similar observations are made for other
conditions.

Figure 10 shows the evolution of the PDFs of IDTs during the
reduction from DME42 to DME40, which are obtained by 50,000
Monte Carlo samples in the kinetic parameter spaces. As shown
in Fig. 10a, the uncertainty decreases as implied by the narrower
PDFs for the autoignition process at high temperature, Ty = 1200K.
And both the truncation and reaction coupling contribute to the
uncertainty reduction as implied by the PDF of the transition
state staying in between. In contrast, for the autoignition process
at low temperature, Ty = 650K, the uncertainty in IDTs remains
almost unchanged since the three PDFs remain the same, in
Fig. 10b.

With the uncertainties of the mechanisms and the correspond-
ing transition state being computed by solving the expectation of
response surface in Eq. (8), the effects of parameter truncation and
reaction coupling on uncertainty propagation are further quanti-
fied. Figure 11 shows the uncertainty propagation in the reduction
from DME42 to DME40. Recall that species C;Hs and C;Hg are
removed during the reduction, which results in significant error in
the IDTs for high temperature autoignition (see Fig. 3). Under each
individual pressure, the relative contribution of reaction coupling
on uncertainty propagation decreases with temperature. For high
temperature ignition, e.g., Ty > 800K, with pressure increases
from latm to 20atm, reaction coupling becomes more important
for uncertainty change, as implied by the observation that the
uncertainty curve for the transition state gradually approaches
toward the one for DME42. Also shown is the evolution of

‘Grd_art ‘ . . .
= ——-> 41" representing the contribution of param-
t = Topq=orc [ +Torc—orsl* P & p

eter truncation on uncertainty propagation. Parameter truncation
in general has significant impact for high-temperature ignition of
DME/air mixtures under relatively low pressures. Similar obser-
vations are made for each equivalence ratio during the reduction
from DME42 to DME40. The uncertainty propagation in the re-
duction from DME55 to DME42 and from DME40 to DME30 are
also analyzed and shown in Appendix B. The uncertainty changes
in the two propagations are slightly relevant, which means that
these reductions do not lead to significant change in both the
mean and the uncertainty of IDTs, under selected thermochemical
conditions.

Since the truncation in the first active direction Pwy; has the
largest influence on the uncertainty change, the uncertainty of
detailed model and transition state can be approximated by:

ra =0 [Nra(Shxa) ] = o [Mra(Whsxd) ], (13)

ore =0 [:a(PS5) Pxo) )] ~ o [ ma((Pwan)'xa )| (14)

With the mapping from kinetic parameters to the Qol being
almost linear as shown in Fig. 7(b), the uncertainty change from
the detailed mechanism to the transition state can be approx-
imated by or.t/oyq ~ [[Pwq1[l/Wa1ll = [IPwg . This has been
confirmed in Fig. 12. The uncertainty change resulting from
the uncertainty parameter truncation is almost linear with the
change in the most active direction. Thus, the transition state
analysis can be performed by considering only the truncation
in active subspace, which can further reduce the computational
cost.

143

Combustion and Flame 227 (2021) 135-146

1.00 - &
A
- AA
% .95 -
S ad
N o2
0.90 - §
AM
0.90 0.95 1.00
| Pwall

Fig. 12. The linear correlation between uncertainty change o.(/0, 4 with the change
in the most active direction ||Pwg ||

4. Conclusions

Efficient and quantitative uncertainty analysis in mechanism
reduction via the methods of active subspace and transition state
analysis has been formulated and demonstrated in the reduction
process of a 55-species, 290-reaction DME mechanism. Results
show that sensitivity analysis can reduce the number of kinetic
parameters from 290 down to 32 and an active subspace of very
few dimensions e.g., 1-3 can be further identified within this 32-
dimensional subspace for constructing the response surface of the
IDTs. The cost for constructing a second order polynomial response
surface is proportional to the square of input parameter dimension
size. Consequently, uncertainty quantification can be performed
with samples that are at least two orders of magnitude less.

With the PCE method being employed for the uncertainty
quantification of individual mechanisms, the proposed transition
state analysis decouples and quantifies the uncertainty change
arising from uncertainty parameter truncation and reaction cou-
pling during reduction. For the three representative skeletal
mechanisms, the reduction process from DME42 to DME40 has
influential effect on high-temperature reaction pathway, and the
other two reduction processes, i.e.,, from DME55 to DME42 and
from DME40 to DME30, mainly affects the low-temperature path-
way. The reaction coupling effect is found to be significant for
uncertainty changes at low temperature regime, in general, while
parameter truncation is dominant at high temperatures. In addi-
tion, the uncertainty change associated with parameter truncation
is proportional to the change in the most active direction.
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Appendix A. Governing equations for the adiabatic, isochoric
autoignition process

The governing equations for adiabatic, isochoric autoignition, a
process widely applied in internal combustion engines, are

dCi

da (R1)

= Vijw;j
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dT

dt

where ¢; is the molar concentration of species i, T is mixture
temperature, v;; is the stoichiometric coefficient of species i in
reaction j, h; is the total molar enthalpy of the ith species, ¢
is the molar weighted constant volume specific heat given by
¢ =¢C,; with G,; being the constant volume specific heat of
species i, and w; is the net reaction rate of reaction j. Note that
Einstein summation convention applies over the Ns species and
d elementary reactions in the ideal gas mixture. The net reaction
rate of reaction j is given by

Ns » Ny U//
. i -1 ij
wj =k ]_[ci KC_].Hq ,
i=1
where v/,

i=1

i and v;; are the forward and reverse stoichiometric
coefficients, respectively, and K. ; is the equilibrium constant of
reaction j, k; ¢ is the forward rate constant given by the Arrhenius
function

(h,’ —RT)V,‘J'(,()]‘/S', (RZ)

(R3)

a.j

E,
kj ;= A;Tb exp <_RT)

where Aj is the pre-exponential factor, b; is the temperature expo-
nent, E, ; is the activation energy of the jth elementary reaction.
Let ¢(t), of dimension Ns + 1, consist of the molar concentra-
tions ¢; and temperature T, the governing ODE could be written in
the following compact form
do
dt - F((p7 k)9
where k, of dimension d, is the forward reaction rate constants
of the d elementary reactions, ie, k=[ky s, ki ....kqf]. In
this study, the uncertainty in the jth elementary reaction is
represented by the uncertainty of the rate constant k;y, which
essentially represents the uncertainty lays in the pre-exponential
factor A;.

(RA4)

(R5)
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Appendix B. The list of important reactions identified by
sensitivity analysis

Index Reaction

R1 H+ 0, [=] O+ OH

R13 H + 0; (+M) [=] HO, (+M)

R15 H + HO, [=] 20H

R17 HO, + OH [=] H,0 + O,

R18 2HO, [=] H,0, + 0,

R20 H,0, (+M) [=] 20H (+M)

R42 CH,0 + H [=] H; + HCO

R44 CH,0 + OH [=] H,0 + HCO

R46 CH,0 + HO, [=] H,0, + HCO

R47 CH,0 + CHj [=] CH4 + HCO

R49 CH; + 0, [=] CH30 + O

R50 CH; + 0, [=] CH,0 + OH

R51 CH; + HO, [=] CH30 + OH

R52 2CH3 (+M) [=] CoHg (+M)

R57 CH; + HO, [=] CH,4 + O,

R71 CH;0 + M [=] CH,0 + H+ M

R239 CH30CH; [=] CH3 + CH30

R240 CH;0CH; + OH [=] CH30CH, + H,0
R241 CH;0CH; + H [=] CH30CH, + H,
R242 CH3 + CH30CH; [=] CH30CH, + CH4
R244 CH;0CH; + HO, [=] CH30CH; + H,0,
R245 CH;0CH; + O, [=] CH30CH, + HO,
R247 CH30CH,0, + CH30CH3 [=] CH30CH, + CH30CH,0,H
R248 CH30CH, [=] CH,0 + CHs

R264 CH;0CH, + O, [=] CH30CH,0,

R266 2CH30CH,0, [=] 2CH30CH,0 + O,
R271 CH30CH,0, [=] CH,0CH,0,H

R272 CH,0CH,0,H [=] 2CH,0 + OH

R273 CH,0CH,0,H + 0, [=] 0,CH,0CH,0,H
R274 0,CH,0CH,0,H [=] HO,CH,0CHO + OH
R275 HO,CH,0CHO [=] OCH,0CHO + OH
R277 HOCH,0CO [=] CO + HOCH,0

Appendix C. Uncertainty analysis of the other two reduction
processes

The reduction processes from DME55 to DME42 and from
DME40 to DME30 are also analysed. As shown in Fig. Al, the
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Fig. A1. Uncertainty in IDTs (in log10) for DME40, DME30 and the transition state from DME40 to DME30, for DME-air autoignition. Lines and dashed lines are uncertainty
in IDTs under each thermochemical condition. Almost all the dashed lines overlap with the black lines, indicating that the effect of truncation in parameter space is weak.
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in IDTs under each thermochemical condition. Almost all the dashed lines overlap with the black lines, indicating that the effect of truncation in parameter space is weak.
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Fig. A3. The linear correlation between uncertainty change o,/0, 4 with the change in the most active direction |[Pwy ||, (a) the reduction from DME40 to DME30, (b) the

reduction from DME55 to DME42.

reduction process from DME40 to DME30 shows no significant un-
certainty change under most thermochemical conditions, especially
at high temperature range. And the uncertainties of transition
state overlap well with those of the detailed model DME40, which
means that the truncation is weak during this reduction process.
The results of the reduction process from DME55 to DME42 also
show slightly uncertainty change only at low temperature and the
truncation in uncertainty is negligible, as shown in Fig. A2.

In addition, the linear correlation between uncertainty change
ort/0rq With the change in the most active direction |[Pwg ]| is
confirmed in Fig. A3. The good linearity of the two reduction pro-
cesses show consistence with the linear correlation approximation
as stated in Section 3.2.
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