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LPV 3.8.8

Prove the following identities:

m∑
k=0

(−1)k
(
n

k

)
= (−1)m

(
n− 1

m

)
;

n∑
k=0

(
n

k

)(
k

m

)
=

(
n

m

)
2n−m.

Answer:

From Pascal Triangle, we have (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
So we have:

m∑
k=0

(−1)k
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−
(
n

3

)
+ · · ·+ (−1)k

(
n

k

)
=

(
n− 1

0

)
−
[(
n− 1

0

)
+

(
n− 1

1

)]
+

[(
n− 1

1

)
+

(
n− 1

2

)]
− · · ·+ (−1)m

[(
n− 1

m− 1

)
+

(
n− 1

m

)]
= (−1)m

(
n− 1

m

)
For the second identity, consider m is a non-negetive number. So when k < m,

(
k
m

)
= 0, then:

n∑
k=0

(
n

k

)(
k

m

)
=

n∑
k=m

(
n

k

)(
k

m

)
Easy to find: (

n

k

)(
k

m

)
=

n!

k!(n− k)!

k!

m!(k −m)!

=
n!

(n− k)!(k −m)!m!

=
n!

(n−m)!m!

(n−m)!

(n− k)!(k −m)!

=

(
n−m
k −m

)(
n

m

)



Homework 2 LPV 3.8.8 (continued)

So:
n∑

k=0

(
n

k

)(
k

m

)
=

(
n

m

) n∑
k=m

(
n−m
k −m

)
=

(
n

m

) n−m∑
i=0

(
n−m
i

)
=

(
n

m

)
2n−m

LPV 3.8.12

Prove that

1 +

(
n

1

)
2 +

(
n

2

)
4 + · · ·+

(
n

n− 1

)
2n−1 +

(
n

n

)
2n = 3n.

Try to find a combinatorial proof.

Answer:

Consider n = 1, obviously we have 1 +
(
1
1

)
2 = 3 = 31, equation is true. If the equation is true when

n = k − 1:

1 +

(
k − 1

1

)
2 +

(
k − 1

2

)
4 + · · ·+

(
k − 1

k − 1

)
2k−1 = 3k−1

Then for n = k, we have:

1 +

(
k

1

)
2 +

(
k

2

)
4 + · · ·+

(
k − 1

k − 1

)
2k−1 +

(
k

k

)
2k

= 1 +

[(
k − 1

0

)
+

(
k − 1

1

)]
2 +

[(
k − 1

1

)
+

(
k − 1

2

)]
4 + · · ·+

[(
k − 1

k − 1

)
+

(
k − 1

k

)]
2k

= 1 +

(
k − 1

1

)
2 +

(
k − 1

2

)
4 + · · ·+

(
k − 1

k − 1

)
2k−1 + 2 +

(
k − 1

1

)
4 + · · ·+

(
k − 1

k − 1

)
2k

= 3k−1 + 2× 3k−1

= 3k

So the equation is true for all n = 1, 2, 3, ...

LPV 3.8.14

Let n be a positive integer divisible by 3. Use Stirling’s formula to find the approximate value of
(

n
n/3

)
.

Answer:

We know that: (
n

n/3

)
=

n!

(n/3)!(2n/3)!

By the Stirling’s formula, we have:

n! ∼
√

2πn
(n
e

)n
, (n/3)! ∼

√
2πn/3

(
n/3

e

)n/3

, (2n/3)! ∼
√

4πn/3

(
2n/3

e

)2n/3

,

And so:(
n

n/3

)
=

√
2πn

(
n
e

)n√
2πn/3

(
n/3
e

)n/3√
4πn/3

(
2n/3
e

)2n/3 =
1

2/3
√
πn
(
1
3

)n
22n/3

=
3

2

√
1

πn
3n2−

2
3n

The comparison between the real value and its approxmation is shown in Figure 1.
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Homework 2 LPV 4.3.7

Figure 1: Comparison of between approximation and real value with total number varies from 3 to 99.

LPV 4.3.7

How many subsets does the set {1, 2, · · · , n} have that contain no three consecutive integers? Find a

recurrence.

Answer:

Denote the sequence of integers as An. It’s easy to find that A1 = 1, A2 = 3, A3 = 6, A4 = 12. And as

shown in Figure 2, when A1, A2, · · · , An are known, we can get An+1 from previous values. (1) Consider the

part of subsets without element n + 1, this part counts to be An obviously; and the part contains element

n+ 1 can be divide into 2 parts: (2a) An with n+ 1 which contains (2b) An−3 exception violating rules. So

the recurrence can be written as:

An+1 = 2An −An−3

With this formula, we can get A5 = 2A4 −A1 = 23, which is proved to be true after counting by hands.

Figure 2: Demonstration of the recurrence of An.

LPV 4.3.12

Recalling the Lucas numbers Ln introduced in Exercise 4.3.2, prove the following identities:

(a) F2n = FnLn;

(b) 2Fk+n = FkLn + FnLk;

(c) 2Lk+n = 5FkFn + LkLn;

(d) L4k = L2
2k − 2;

(e) L4k+2 = L2
2k+1 + 2.

Answer:

LPV 4.3.12 continued on next page. . . Page 3 of 8



Homework 2 LPV 4.3.12 (continued)

From Exercise 4.3.2 we can easily know that:

Ln = Fn + 2Fn−1

(a)

FnLn = Fn(Fn + 2Fn−1)

= F 2
n + 2FnFn−1 + F 2

n−1 − F 2
n−1

= (Fn + Fn−1)2 − F 2
n−1

= F 2
n+1 + F 2

n − F 2
n − F 2

n−1

= F2n+1 − F2n−1

= F2n

(b) From identity (4.5) Fa+b+1 = Fa+1Fb+1 + FaFb, we can get:

FkLn + FnLk = Fk(Fn + 2Fn−1) + Fn(Fk + 2Fk−1)

= 2FkFn + 2Fn−1Fk + 2Fk−1Fn + 2Fk−1Fn−1 − 2Fk−1Fn−1

= 2(Fk + Fk+1)(Fn + Fn−1)− 2Fk−1Fn−1

= 2(Fk+1Fn+1 + FkFn − FkFn − Fk−1Fn−1)

= 2(Fk+n+1 − Fk+n−1)

= 2Fk+n

(c)

5FkFn + LkLn = 5FkFn + (Fk + 2Fk−1)(Fn + 2Fn−1)

= 2(FkFn + Fk−1Fn + 2Fn−1Fk) + 4(FkFn + Fk−1Fn−1)

= 2Fk+n + 4Fk+n−1

= 2Lk+n

(d) From (a) and identity (4.5), it’s easy to get:

L4k = F4k + 2F4k−1

= F2kL2k + 2(F2kF2k + F2k−1F2k−1)

= L2
2k − L2k(F2k + 2F2k−1) + F2kL2k + 2(F2kF2k + F2k−1F2k−1)

= L2
2k − 2F2kF2k−1 + 2F 2

2k − 2F 2
2k−1

= L2
2k + 2F 2

2k − 2F2k−1F2k+1

Denote An = F 2
n − Fn−1Fn+1, so:

An = F 2
n − Fn−1Fn+1

= F 2
n − Fn−1(Fn + Fn−1)

= (Fn − Fn−1)Fn − F 2
n−1

= −(F 2
n−1 − Fn−2Fn)

= −An−1

= (−1)n−1A1
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Homework 2 LPV 4.3.12 (continued)

And A1 = F 2
1 − F0F2 = 1, so:

L4k = L2
2k + 2A2k = L2

2k + 2(−1)2k−1 = L2
2k − 2

(e) Similar to (d), we have:

L4k+2 = L2
2k+1 + 2A2k+1 = L2

2k+1 + 2(−1)2k = L2
2k+1 + 2

LPV 4.3.14

(a) Prove that every positive integer can be written as the sum of different Fibonacci numbers.

(b) Prove even more: every positive integer can be written as the sum of different Fibonacci numbers, so

that no two consecutive Fibonacci numbers are used.

(c) Show by an example that the representation in (a) is not unique, but also prove that the more

restrictive representation in (b) is.

Answer:

(a) Consider positive integer N , when N is equal to a Fibonacci number, the identity is obviously true.

If for any 0 < N < Fn, the identity is true, and

N =

n−1∑
i=1

aiFi, ai ∈ {0, 1}

So for bigger integer Fn < N < Fn+1, we can get:

N = Fn +

n−1∑
i=1

biFi, bi ∈ {0, 1}

which means if first few integers satisfy the identity, then the identity is true for all integers. Since we have

known that for N = 1, 2, 3, 5, 8..., the identity is true. Then we can say every positive integer can be written

as the sum of different Fibonacci numbers.

(b) Similar to (a), we only need to prove that
∑
Fn + Fn−2 + · · · ≥ Fn+1 − 1, then for every integers

between Fn and Fn+1, the identity are true. Here are inductions:

F1 + F3 = F4, then F1 + F3 + F5 = F4 + F5 = F6

Known

k∑
i=1

F2k−1 = F2k, then

k+1∑
i=1

F2k−1 = F2k + F2k+1 = F2k+1

F2 + F4 = F5 − 1, then F2 + F4 + F6 = F5 − 1 + F6 = F7 − 1

Known

k∑
i=1

F2k = F2k+1 − 1, then

k+1∑
i=1

F2k = F2k+1 − 1 + F2k+2 = F2k+3 − 1

So
∑
Fn +Fn−2 + · · · ≥ Fn+1− 1 is true for all positive even numbers and odd numbers. Which in result

proves the identity.

(c) An example: when N = 32, there can be 2 ways to represent (a) as below

32 = 21 + 8 + 3 = 13 + 8 + 5 + 3 + 2 + 1

LPV 4.3.14 continued on next page. . . Page 5 of 8



Homework 2 LPV 4.3.14 (continued)

But for representation in (b), there is only one exception that

F2k =

k∑
i=1

F2k−1

And all integers left have only one way to get the identity true shown in (b).

Special Problem 1

In class we considered a 3-Person Hat Problem in which each person can see the bits posted on the other

two people’s foreheads and tries to guess the bit on his/her own forehead, but each person is permitted to

make no guess; the team wins if (1) no one makes an incorrect guess, and (2) at least one person makes a

correct guess. We discussed a strategy for the team with a probability 3/4 to win.

Question: Give a rigorous proof that this is the best strategy possible. That is, no strategy for the team

can win with probability higher than 3/4. Your model should be general enough to include strategies with

randomized moves. (Recall that in class, we mentioned a particular strategy in which one person always

make a random guess (0 or 1) and the other two don’t speak.)

Remarks You should first define a mathematical model. Define a probability space, how any strategy

is specified precisely, and how to define win as an event for the strategy. This allows you to define what the

term best strategy means.

Answer:

The state space should be:

{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1},
{1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}

And probability for each state is all 1/8. The strategy to win 3/4 conditions is:

(1) If first person sees one type of bits, he guess the other type. The other two partners will know

their bits.

(2)If first person sees two type of bits, he makes no guess. Since the other two will know each others’

bit, then they can guess for themselves.

Consider the infomation passed from the first person, we can know for sure that he can not make

sure what type of bit he has in every state. And if he always make no guess, he brings nothing

to the other two. Which means he can only make no guess in at most half of states to pass

infomation, and for the other half, he can only make a guess which can wins in at most half of

states left.

The proof is not rigorous enough, but it explains well for me.

Special Problem 2

We discussed in class a game of ”Finding your IDs” for n students, using a cycle-following strategy for all

the students. Let g(n) be the probability of winning in this game, i.e. all students succeed in finding their

ID.

(a) Give an explicit mathematical formula for g(n).

(b) Determine the value of limn→∞ g(n).

(c) Let us consider a modified game, in which each student is only allowed to search through n/3 boxes

(instead of n/2). Let h(n) be the probability of winning. Determine the value of limn→∞ h(n).

Special Problem 2 continued on next page. . . Page 6 of 8



Homework 2 Special Problem 2 (continued)

Answer:

(a) Since each student have half probability to get his ID correct, then g(n) = (1
2 )n

(b) limn→∞ g(n) = limn→∞( 1
2 )n = 0

(c) Similarly, h(n) = (1
3 )n, limn→∞ h(n) = limn→∞( 1

3 )n = 0

Special Problem 3

In a New Year’s party with 2n people, k random names are picked to receive gifts. Assume that these 2n

people are actually n husband-wife couples. Let rn,k be the probability that at least for one couple, both

husband and wife win gifts.

(a) Give a mathematical formula for rn,k.

(b) Determine the value of limn→∞ rn,
√
n .

Answer:

(a) The opposite condition is that all k persons belong to different couples. So:

if k ≤ n, rn,k = 1− Ck
n2k

Ck
2n

else, rn,k = 1

(b) For n, k

1− Ck
n2k

Ck
2n

= 1− n!2k(2n− k)!

(2n)!(n− k)!

And with k =
√
n, Stirling’s formula n! ∼

√
2πn(n

e )n, we have:

lim
n→∞

rn,
√
n = 1− lim

n→∞

√
2πn

(
n
e

)n√
2π(2n−

√
n)
(

2n−
√
n

e

)2n−√n

√
2π2n

(
2n
e

)2n√
2π(n−

√
n)
(

n−
√
n

e

)n−√n

= 1− lim
n→∞

√
2
√
n− 1

2
√
n− 2

(
2
√
n− 1

2
√
n− 2

)n−
√
n(

1− 1

2
√
n

)n

Denote
√
n as x, then

lim
n→∞

rn,
√
n = 1− lim

x→∞

(
2x− 1

2x− 2

)x2−x+ 1
2
(

1− 1

2x

)x2

, 1−A

lnA = lim
x→∞

(
x2 − x+

1

2

)
ln

(
1 +

1

2x− 2

)
+ lim

x→∞
x2 ln

(
1− 1

2x

)
= lim

x→∞

(
−x+

1

2

)
ln

(
1 +

1

2x− 2

)
+ lim

x→∞
x2 ln

(
1 +

1

2x− 2

)(
1− 1

2x

)

Special Problem 3 continued on next page. . . Page 7 of 8



Homework 2 Special Problem 3 (continued)

First part:

lim
x→∞

(
−x+

1

2

)
ln

(
1 +

1

2x− 2

)
= −1

2
lim
c→∞

(c+ 1) ln(1 + 1/c)

= −1

2
lim
c→∞

∂ ln(1 + 1/c)

∂c
/
∂ 1

c+1

∂c

= −1

2
lim
c→∞

c+ 1

c

= −1

2

Second part:

lim
x→∞

x2 ln

(
1 +

1

2x− 2

)(
1− 1

2x

)
= lim

x→∞
x2 ln

(
1 +

1

4x(x− 1)

)

= lim
x→∞

∂ ln(1+ 1
4x(x−1)

)

∂x
∂ 1

x2

∂x

= lim
x→∞

x2

2(x− 1)(2x− 1)

=
1

4

So:

lim
n→∞

rn,
√
n = 1− elnA = 1− e− 1

2+
1
4 = 1− e− 1

4

And Figure 3 shows the convergence between of rn,
√
n and 1− e− 1

4 .

Figure 3: Demonstration of the convergence between of rn,
√
n and 1− e− 1

4 .
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