Mathematics for Computer Science
Spring 2019
Due: 23:59, March 18, 2019

Homework Set 3

Reading Assignments: Read Chapter 5, and Chapter 6.1-6.7 of LPV.

Written Assignments: Do the following exercises from LPV: 5.4.3, 5.4.4, 5.4.5, 6.3.5, 6.5.2, 6.5.4.

Special Problem 1 (counted as 2 exercises) Alice and Bob each independently tosses an unbiased coin n times. Let X and Y be the random variables corresponding to the number of HEADs in Alice' and Bob's results. Your solutions must be closed-form formulas in n.
(a) Determine the expected value of the random variable $X-Y$.
(b) Determine the variance of the random variable $X-Y$.
(c) Let S denote the event that $X=Y$, and let $s(n)=\operatorname{Pr}\{S\}$. Determine $s(n)$.
(d) Let T denote the event that $X=Y+1$, and let $t(n)=\operatorname{Pr}\{T\}$. Determine $t(n)$.

Remarks A closed-form formula has only a bounded number of terms involving familiar functions. For example, $\log _{2} x+x^{5}$ is a closed-form formula in $x, n^{3}+\binom{n^{2}}{n} /(n+6)-\cos (1 / n)$ is a closed-form formula in n, while $\sum_{1 \leq i \leq n} i^{2}$ is not a closed-form formula in n. For your information, $s(1)=1 / 2$, $s(2)=3 / 8, t(1)=1 / 4, t(2)=1 / 4$.

Special Problem 2 (counted as 3 exercises) Toward the end of last class, we were analyzing the expected running time of a program that finds the minimum of an array $x[1: n]$. Assume the content of the array is a (uniformly chosen) random permutation. The program scans the array from left to right, updating the current value of minimum (stored as variable z). The analysis focuses on the random variable Y_{n}, defined as the number of times the updating- z line is executed. It is clear that Y_{n} is the number of left-to-right minima for a random permutation of $\{1,2, \cdots, n\}$.
(a) Prove that $E\left(Y_{n}\right)=H_{n}$, where $H_{n}=\sum_{1 \leq j \leq n} \frac{1}{\bar{j}}$.
(b) Prove that $\operatorname{Var}\left(Y_{n}\right)=H_{n}-H_{n}^{(2)}$, where $H_{n}^{(2)}=\sum_{1 \leq j \leq n} \frac{1}{j^{2}}$.
(c) Prove that $\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(Y_{n}\right)}{H_{n}}=1$. (Thus, as the standard deviation $\sigma\left(Y_{n}\right) \approx \sqrt{E\left(Y_{n}\right)}$ for large n, the random variable Y_{n} takes on value typically not too far from $E\left(Y_{n}\right)$.)

Special Problem 3 (counted as 4 exercises) Consider the tree-cutting problem for a rooted tree T of n nodes, as discussed in class. Let X_{T} be the random variable denoting the number of cutting moves. It was shown that $E\left(X_{T}\right)=\sum_{v \in T} \frac{1}{1+\operatorname{depth}(v)}$.
(a) What is the tree T with the smallest value of $E\left(X_{T}\right)$?
(b) What is the tree T with the largest value of $E\left(X_{T}\right)$?
(c) An expression for $\operatorname{Var}\left(X_{T}\right)$ was given in class. Give a rigorous derivation of that formula. (The
argument discussed in class was not accurate, as pointed out by a student after class. Try to derive it using only the concepts we have already introduced in class; so try not to use the concept of conditional probability which could lead to troubles if not careful.)
(d) Determine, as closed-form formulas, for $E\left(X_{T}\right) \operatorname{Var}\left(X_{T}\right)$ when T is a chain of length n. (You may consider H_{n} and $H_{n}^{(2)}$ as familiar functions.) In this case, is the value of X_{T} clustered around its expected value?

