Mathematics for Computer Science: Homework 3

Xingyu Su 2015010697

March 18, 2019

LPV 5.4.3

Let A and B be independent events. Express the probability $P(A \cup B)$ in terms of the probabilities of A and B.

Answer:

Because A and B are independent events, so $P(A \cap B)=0$.
Then $P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)$

LPV 5.4.4

We select a subset X of the set $S=\{1,2, \ldots, 100\}$ randomly and uniformly (so that every subset has the same probability of being selected). What is the probability that
(a) X has an even number of elements;
(b) both 1 and 100 belong to X ;
(c) the largest element of X is 50 ;
(d) X has at most 2 elements.

Answer:

(a)

$$
P(a)=\frac{1}{2^{100}}\left(\binom{0}{100}+\binom{2}{100}+\cdots+\binom{98}{100}+\binom{100}{100}\right)=\frac{1}{2}
$$

(b)

$$
P(b)=\frac{2^{98}}{2^{100}}=\frac{1}{4}
$$

(c)

$$
P(c)=\frac{2^{49}}{2^{100}}=\frac{1}{2^{51}} \approx 4.44 \times 10^{-16}
$$

(d)

$$
P(d)=\frac{\binom{0}{100}+\binom{1}{100}+\binom{2}{100}}{2^{100}} \approx 4 \times 10^{-27}
$$

LPV 5.4.5

We flip a coin n times $(n \geq 1)$. For which values of n are the following pairs of events independent?
(a) The first coin flip was heads; the number of all heads was even.
(b) The first coin flip was head; the number of all heads was more than the number of tails.
(c) The number of heads was even; the number of heads was more than the number of tails.

Answer:

(a) To get same probability for even and odd number of all heads for left $2 \sim n$ coins, n should be an odd number with $n>1$. Thus, $n=3,5,7, \ldots, 2 k+1, \ldots$
(b) Since the symmetry will guarantee the probability of more heads and more tails are always the same. So any $n \geq 1$ is reasonable.
(c) To keep the symmetry, n should be an even number. Thus, $n=2,4,6, \ldots, 2 k, \ldots$

LPV 6.3.5

Let p be a prime and $1 \leq a \leq p-1$. Consider the numbers $a, 2 a, 3 a, \ldots,(p-1) a$. Divide each of them by p, to get residues $r_{1}, r_{2}, \ldots, r_{p-1}$. Prove that every integer from 1 to $p-1$ occurs exactly once among these residues.
[Hint: First prove that no residue can occur twice.]

Answer:

First prove that no residue can occur twice. Assume there are two different coefficients $k, s(k>s)$ that have same residues $r_{k}=r_{s}=r$. Denote the division as:

$$
\begin{aligned}
& k a=k^{\prime} p+r \\
& s a=s^{\prime} p+r
\end{aligned}
$$

Then

$$
(k-s) a=\left(k^{\prime}-s^{\prime}\right) p
$$

Where $(k-s)$ and $\left(k^{\prime}-s^{\prime}\right)$ are positive integers. But p is a prime number and $0<k-s<p-1$ $1 \leq a \leq p-1$ can not have factorization p. So there comes conflict and the Assumption is wrong.

Since there is no residue occur twice and all residues have $1 \leq r_{1}, r_{2}, \ldots, r_{p-1} \leq p-1$. So every integer from 1 to $p-1$ occurs exactly once among these residues.

LPV 6.5.2

Consider a regular p-gon, and for a fixed $k(1 \leq k \leq p-1)$, consider all k-subsets of the set of its vertices. Put all these k-subsets into a number of boxes: We put two k-subsets into the same box if they can be rotated into each other. For example, all k-subsets consisting of k consecutive vertices will belong to one and the same box.
(a) Prove that if p is a prime, then each box will contain exactly p of these rotated copies.
(b) Show by an example that (a) does not remain true if we drop the assumption that p is a prime.
(c) Use (a) to give a new proof of Lemma 6.5.2.

Answer:

(a) Since each set can be rotated p times, we just need to prove that each of the p rotated copies of a set are different. Suppose that there is a copy occurs k times during the rotation. Then every other copy must occur k times. Now we get $k \mid p$, and obviously $k!=p$ so $k=1$. In result, the identity is proved.
(b) Consider a case shown in Figure 1.
(c) Since each box contains p subsets of size k, the total number of subsets $\binom{p}{k}$ must satisfy $p\binom{p}{k}$

Figure 1: A hexagon shows (a) is wrong when p is not a prime number

LPV 6.5.4

Give a third proof of Fermat's "Little" Theorem based on Exercise 6.3.5.
[Hint: Consider the product $a(2 a)(3 a) \cdots((p-1) a)$]

Answer:

From Exercise 6.3.5, we know that if $k a$ can be denote as $m_{k} p+r_{k}$ for $k=1,2, \cdots, p-1$, then every integer from 1 to $p-1$ occurs exactly once among $r_{1}, r_{2}, \cdots, r_{p-1}$. Consider the product $a(2 a)(3 a) \cdots((p-1) a)$, we have:

$$
a(2 a)(3 a) \cdots((p-1) a)=(p-1)!a^{p-1}
$$

Then:

$$
\begin{aligned}
(p-1)!\left(a^{p-1}-1\right) & =a(2 a)(3 a) \cdots((p-1) a)-(p-1)! \\
& =\left(m_{1} p+r_{1}\right)\left(m_{2} p+r_{2}\right) \cdots\left(m_{p-1} p+r_{p-1}\right)-r_{1} r_{2} \cdots r_{p-1} \\
& =c_{1} p^{p-1}+c_{2} p^{p-2}+\cdots+c_{p-1} p
\end{aligned}
$$

Which obviously satisfies $p \mid a^{p-1}-1$.

Special Problem 1

Alice and Bob each independently tosses an unbiased coin n times. Let X and Y be the random variables corresponding to the number of HEADs in Alice' and Bob's results. Your solutions must be closed-form formulas in n.
(a) Determine the expected value of the random variable $X-Y$.
(b) Determine the variance of the random variable $X-Y$.
(c) Let S denote the event that $X=Y$, and let $s(n)=\operatorname{Pr}\{S\}$. Determine $s(n)$.
(d) Let T denote the event that $X=Y+1$, and let $t(n)=\operatorname{Pr}\{T\}$. Determine $t(n)$.

Answer:

Easy to know that X and Y are independent, and:

$$
P(X=k)=P(Y=k)=\frac{1}{2^{n}}\binom{n}{k}
$$

$$
\begin{gathered}
E(X)=E(Y)=\frac{1}{2^{n}} \sum_{k=0}^{n} k\binom{n}{k}=\frac{n}{2} \\
D(X)=D(Y)=\frac{1}{2^{n}} \sum_{k=0}^{n}\left(k-\frac{n}{2}\right)^{2}\binom{n}{k}=\frac{n}{4}
\end{gathered}
$$

(a)

$$
E(X-Y)=E(X)-E(Y)=\sum_{k=0}^{n} k P(X=k)-k P(Y=k)=0
$$

(b)

$$
D(X-Y)=D(X)+D(Y)=\frac{n}{2}
$$

(c)

$$
s(n)=P(X=Y)=\sum_{k=0}^{n} P(X=k) P(Y=k)=\frac{1}{2^{2 n}} \sum_{k=0}^{n}\binom{n}{k}^{2}
$$

Consider equation $(1+x)^{n}(1+x)^{n}=(1+x)^{2 n}$, we have:

$$
\left(\binom{n}{0}+x\binom{n}{1}+\cdots x^{n}\binom{n}{n}\right)^{2}=\binom{2 n}{0}+x\binom{2 n}{1}+\cdots x^{2 n}\binom{2 n}{2 n}
$$

Compare the coefficients of x^{n}, we get:

$$
\begin{aligned}
\binom{2 n}{n} & =\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\cdots+\binom{n}{n}+\binom{n}{0} \\
& =\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}
\end{aligned}
$$

So

$$
s(n)=\frac{1}{2^{2 n}} \sum_{k=0}^{n}\binom{n}{k}^{2}=\frac{1}{2^{2 n}}\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2} 2^{2 n}}
$$

(d)

$$
t(n)=P(X=Y+1)=\sum_{k=0}^{n-1} P(X=k+1) P(Y=k)=\frac{1}{2^{2 n}} \sum_{k=0}^{n-1}\binom{n}{k+1}\binom{n}{k}
$$

Similar to (c), compare the coefficients of x^{n+1}, we get:

$$
\begin{aligned}
\binom{2 n}{n+1} & =\binom{n}{n}\binom{n}{1}+\binom{n}{n-1}\binom{n}{2}+\cdots+\binom{n}{1}\binom{n}{n} \\
& =\binom{n}{0}\binom{n}{1}+\binom{n}{1}\binom{n}{2}+\cdots+\binom{n}{n-1}\binom{n}{n}
\end{aligned}
$$

So

$$
t(n)=\frac{1}{2^{2 n}} \sum_{k=0}^{n-1}\binom{n}{k}\binom{n}{k+1}=\frac{1}{2^{2 n}}\binom{2 n}{n+1}=\frac{(2 n)!}{(n+1)!(n-1)!2^{2 n}}
$$

Acknowledgement:

None

