Mathematics for Computer Science
Spring 2019
Due: 23:59, March 25, 2019

Homework Set 4

Reading Assignments: Read Chapter $6.8-6.10$ of LPV.

Written Assignments: Do the following exercises from LPV: 6.10.22, 6.10.23.

Special Problem 1 (counted as 1 exercise) Consider a random walk on a circle with nodes $v_{0}, v_{1}, \cdots, v_{n-1}$, and an edge between v_{i} and $v_{(i+1) \bmod n}$ for each of $i=0,1,2, \cdots, n-1$. Starting initially at v_{0}, in each step we move from the current node v_{i} randomly to either $v_{(i-1) \bmod n}$ or $v_{(i+1) \bmod n}$ with equal probability. After N steps, let p_{N} be the probability that all n nodes have been visited. Prove that $p_{N} \geq 1-c n / N^{1 / 2}$ for some positive constant c.

Remark This implies that $p_{N} \rightarrow 1$ as $N \rightarrow \infty$. Thus, an infinite random walk on such a circle will eventually visit all the nodes.

Special Problem 2 (counted as 4 exercises) Let $P_{2 n}$ be the set of all ($2 n$)! permutations of $\{1,2,3, \cdots, 2 n\}$. For any $\sigma=\left(a_{1}, a_{2}, \cdots, a_{2 n}\right) \in P_{2 n}$, a pair of positions (i, j) (where $i<j$) is called an inversion in σ if $a_{i}>a_{j}$. For example, in the permutation $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(2,4,1,3)$, $(2,4)$ is an inversion as $a_{2}=4>a_{4}=3$; in fact, in this case there are exactly 3 inversions $(1,3),(2,3),(2,4)$.

For any $\sigma=\left(a_{1}, a_{2}, \cdots, a_{2 n}\right) \in P_{2 n}$, let $f(\sigma)$ be the permutation obtained from σ by sorting the sublist of odd positions. That is, $f(\sigma)=\left(b_{1}, b_{2}, \cdots, b_{2 n}\right) \in P_{2 n}$, where $b_{k}=a_{k}$ for $k=2,4,6, \cdots, 2 n$ and $b_{1}<b_{3}<b_{5}<\cdots<b_{2 n-1}$ is the sorted list of $a_{1}, a_{3}, \cdots, a_{2 n-1}$. For example, for $\sigma=(3,8,2,5,6,7,1,4), f(\sigma)=(1,8,2,5,3,7,6,4)$. For a random σ uniformly chosen from $P_{2 n}$, let I_{n} be the random variable corresponding to the number of inversions in the permutation $f(\sigma)$. Do the following problems:
(a) (counted as 1 exercise) Determine $E\left(I_{n}\right)$.
(b) (counted as 3 exercises) Determine $\operatorname{Var}\left(I_{n}\right)$.

Remarks For Question (a) above, let $h_{n}=E\left(I_{n}\right)$ be the answer, then $h_{1}=1 / 2, h_{2}=13 / 6$, $h_{3}=5$. Your formula should be consistent with that.

Special Problem 3 (counted as 4 exercises) Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent Poisson trials such that $\operatorname{Pr}\left\{X_{i}=1\right\}=p_{i}$. Let $X=\sum_{1 \leq i \leq n} X_{i}$ and $\mu=E(X)$. In class we derived one version of the Chernoff Bounds regarding the probability that $X>(1+\delta) \mu$. Here you are asked to prove the following bounds in a similar way:
(a) For $0<\delta<1$,

$$
\operatorname{Pr}\{X \leq(1-\delta) \mu\} \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}
$$

(b) Assume that $p_{i}=1 / 2$ for all i. Prove the stronger bound that

$$
\operatorname{Pr}\left\{\left|X-\frac{n}{2}\right|>a\right\} \leq 2 e^{\frac{-2 a^{2}}{n}}
$$

(Hint: First show that $e^{t}+1 \leq 2 e^{t / 2+t^{2} / 8}$ for all $t>0$.)

Special Problem 4 (counted as 2 exercises) Use the Chernoff Bounds derived in class and in the above problem to prove the following inequalities: For all $0<\delta \leq 1$
(a) $\operatorname{Pr}\{X \geq(1+\delta) \mu\} \leq e^{-\mu \delta^{2} / 3}$.
(b) $\operatorname{Pr}\{X \leq(1-\delta) \mu\} \leq e^{-\mu \delta^{2} / 2}$.

Remark Note that it follows from (a) and (b) that $\operatorname{Pr}\{|X-E(X)|>a\} \leq 2 e^{-a^{2} / 3 E(X)}$ for all $0<a \leq E(X)$.

