Mathematics for Computer Science Spring 2019 Due: 23:59, March 25, 2019

Homework Set 4

Reading Assignments: Read Chapter 6.8 – 6.10 of LPV.

Written Assignments: Do the following exercises from LPV: 6.10.22, 6.10.23.

Special Problem 1 (counted as 1 exercise) Consider a random walk on a circle with nodes v_0, v_1, \dots, v_{n-1} , and an edge between v_i and $v_{(i+1) \mod n}$ for each of $i = 0, 1, 2, \dots, n-1$. Starting initially at v_0 , in each step we move from the current node v_i randomly to either $v_{(i-1) \mod n}$ or $v_{(i+1) \mod n}$ with equal probability. After N steps, let p_N be the probability that all n nodes have been visited. Prove that $p_N \geq 1 - cn/N^{1/2}$ for some positive constant c.

Remark This implies that $p_N \to 1$ as $N \to \infty$. Thus, an infinite random walk on such a circle will eventually visit all the nodes.

Special Problem 2 (counted as 4 exercises) Let P_{2n} be the set of all (2n)! permutations of $\{1, 2, 3, \dots, 2n\}$. For any $\sigma = (a_1, a_2, \dots, a_{2n}) \in P_{2n}$, a pair of positions (i, j) (where i < j) is called an *inversion* in σ if $a_i > a_j$. For example, in the permutation $(a_1, a_2, a_3, a_4) = (2, 4, 1, 3)$, (2, 4) is an inversion as $a_2 = 4 > a_4 = 3$; in fact, in this case there are exactly 3 inversions (1, 3), (2, 3), (2, 4).

For any $\sigma = (a_1, a_2, \dots, a_{2n}) \in P_{2n}$, let $f(\sigma)$ be the permutation obtained from σ by sorting the sublist of odd positions. That is, $f(\sigma) = (b_1, b_2, \dots, b_{2n}) \in P_{2n}$, where $b_k = a_k$ for $k = 2, 4, 6, \dots, 2n$ and $b_1 < b_3 < b_5 < \dots < b_{2n-1}$ is the sorted list of $a_1, a_3, \dots, a_{2n-1}$. For example, for $\sigma = (3, 8, 2, 5, 6, 7, 1, 4)$, $f(\sigma) = (1, 8, 2, 5, 3, 7, 6, 4)$. For a random σ uniformly chosen from P_{2n} , let I_n be the random variable corresponding to the number of inversions in the permutation $f(\sigma)$. Do the following problems:

- (a) (counted as 1 exercise) Determine $E(I_n)$.
- (b) (counted as 3 exercises) Determine $Var(I_n)$.

Remarks For Question (a) above, let $h_n = E(I_n)$ be the answer, then $h_1 = 1/2$, $h_2 = 13/6$, $h_3 = 5$. Your formula should be consistent with that.

Special Problem 3 (counted as 4 exercises) Let X_1, X_2, \dots, X_n be independent Poisson trials such that $\Pr\{X_i = 1\} = p_i$. Let $X = \sum_{1 \le i \le n} X_i$ and $\mu = E(X)$. In class we derived one version of the Chernoff Bounds regarding the probability that $X > (1 + \delta)\mu$. Here you are asked to prove the following bounds in a similar way: (a) For $0 < \delta < 1$,

$$\Pr\{X \le (1-\delta)\mu\} \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$$

(b) Assume that $p_i = 1/2$ for all *i*. Prove the stronger bound that

$$\Pr\{|X - \frac{n}{2}| > a\} \le 2e^{\frac{-2a^2}{n}}.$$

(**Hint:** First show that $e^t + 1 \leq 2e^{t/2+t^2/8}$ for all t > 0.)

Special Problem 4 (counted as 2 exercises) Use the Chernoff Bounds derived in class and in the above problem to prove the following inequalities: For all $0 < \delta \leq 1$ (a) $\Pr\{X \ge (1+\delta)\mu\} \le e^{-\mu\delta^2/3}$. (b) $\Pr\{X \le (1-\delta)\mu\} \le e^{-\mu\delta^2/2}$.

Remark Note that it follows from (a) and (b) that $\Pr\{|X - E(X)| > a\} \le 2e^{-a^2/3E(X)}$ for all $0 < a \le E(X).$