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Special Problem 1

[Inference in Bayesian Networks]

Consider a probability space with three binary (i.e. 0-1 valued) random variables B, F , G satisfying the

following properties:

(1) B and F are independent with Pr{B = 1} = Pr{F = 1} = 0.9;

(2) Pr{G = 1 | B = 1, F = 1} = 0.8, Pr{G = 1 | B = 1, F = 0} = 0.2, Pr{G = 1 | B = 0, F = 1} = 0.2,

Pr{G = 1 | B = 0, F = 0} = 0.1.

Remarks The above random variables model a car system with B, F representing the true physical

states of the battery and fuel respectively (value 1 representing full, while 0 representing empty). The

random variable G represent a fuel gauge (i.e. a meter on the panel that the car driver can see), which gives

a (somewhat unreliable) reading of the fuel state. Both B and F can influence (probabilistically) the result

of reading the gauge G. Thus, the three random variables (together with the probability assignments) form

a very simple Bayesian network, with a causal arrow pointing from B to G, and an arrow pointing from F

to G.

Questions:

(a) Even without calculation, we expect the value of Pr{F = 0 | G = 0} to be greater than Pr{F = 0}.
Why? Now for the calculation. What is Pr{G = 0}? What is Pr{F = 0}? What is Pr{G = 0 | F = 0}?
Use Bayes’ Rule to determine the value of Pr{F = 0 | G = 0}.

(b) Even without calculation, we expect the value of Pr{F = 0 | G = 0, B = 0} to be less than

Pr{F = 0 | G = 0} (which was calculated in (a) above). Why? Determine exactly the value of Pr{F =

0 | G = 0, B = 0}.
(c) Give an explicit description of a probability space (Ω, p) and the realization of the random variables

B, F , G in that probability space.

Answer:

We know that:

Pr{B = 1} = Pr{F = 1} = 0.9, P r{B = 0} = Pr{F = 0} = 0.1

Pr{G = 1 | B = 1, F = 1} = 0.8, P r{G = 0 | B = 1, F = 1} = 0.1

Pr{G = 1 | B = 1, F = 0} = 0.2, P r{G = 0 | B = 1, F = 0} = 0.8

Pr{G = 1 | B = 0, F = 1} = 0.2, P r{G = 0 | B = 0, F = 1} = 0.8

Pr{G = 1 | B = 0, F = 0} = 0.1, P r{G = 0 | B = 0, F = 0} = 0.9

(a) Because from Bayes’ Theroem, we have Pr{F = 0 | G = 0} that:

Pr{F = 0 | G = 0} =
Pr{G = 0 | F = 0}Pr{F = 0}

Pr{G = 0}
=
Pr{G = 0 | F = 0}

Pr{G = 0}
Pr{F = 0}
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And with known that G represent a fuel gauge, so Pr{G = 0 | F = 0} should be greater than Pr{G = 0},
so Pr{F = 0 | G = 0} to be greater than Pr{F = 0}.

Pr{G = 0} can be get by:

Pr{G = 0} =Pr{G = 0 | B = 1, F = 1}Pr{B = 1}Pr{F = 1}
+ Pr{G = 0 | B = 1, F = 0}Pr{B = 1}Pr{F = 0}
+ Pr{G = 0 | B = 0, F = 1}Pr{B = 0}Pr{F = 1}
+ Pr{G = 0 | B = 0, F = 0}Pr{B = 0}Pr{F = 0}

=0.2× 0.9× 0.9 + 0.8× 0.9× 0.1 + 0.8× 0.1× 0.9 + 0.9× 0.1× 0.1

=0.315

And obviously, we have:

Pr{F = 0} = 1− Pr{F = 1} = 0.1

Pr{G = 0 | F = 0} =Pr{G = 0 | B = 1, F = 0}Pr{B = 1}+ Pr{G = 0 | B = 0, F = 0}Pr{B = 0}
=0.8× 0.9 + 0.9× 0.1

=0.81

Finally,

Pr{F = 0 | G = 0} =
Pr{G = 0 | F = 0}Pr{F = 0}

Pr{G = 0}

=
0.81× 0.1

0.315

=0.257

(b) Because G = 0 has two sources: B = 0 and F = 0. So when G = 0, F = 0 has less probability when

B = 0. To calculate Pr{F = 0 | G = 0, B = 0}, first we get Pr{G = 0 | B = 0} by:

Pr{G = 0 | B = 0} =Pr{G = 0 | B = 0, F = 1}Pr{F = 1}+ Pr{G = 0 | B = 0, F = 0}Pr{F = 0}
=0.8× 0.9 + 0.9× 0.1

=0.81

Then,

Pr{F = 0 | G = 0, B = 0} =
Pr{G = 0, B = 0 | F = 0}Pr{F = 0}

Pr{G = 0, B = 0}

=
Pr{G = 0 | B = 0, F = 0}Pr{B = 0}Pr{F = 0}

Pr{G = 0 | B = 0}Pr{B = 0}

=
0.9× 0.1

0.81

=0.111 < 0.257 = Pr{F = 0 | G = 0}

(c) To descripe the probability space (Ω,F , P ), all F and their probabilities should be given:

Pr{B = 1} = 0.9, P r{F = 1} = 0.9, P r{G = 1} = 0.685

Pr{B = 0} = 0.1, P r{F = 0} = 0.1, P r{G = 0} = 0.315

Special Problem 1 continued on next page. . . Page 2 of 4



Homework 5 Special Problem 1 (continued)

Pr{B = 1, F = 1} = 0.81, P r{B = 1, F = 0} = 0.09

Pr{B = 0, F = 1} = 0.09, P r{B = 0, F = 0} = 0.01

Pr{G = 1, F = 1} = 0.666, P r{G = 1, F = 0} = 0.019

Pr{G = 0, F = 1} = 0.234, P r{G = 0, F = 0} = 0.081

Pr{G = 1, B = 1} = 0.666, P r{G = 1, B = 0} = 0.019

Pr{G = 0, B = 1} = 0.234, P r{G = 0, B = 0} = 0.081

Pr{G = 1, B = 1, F = 1} = 0.648, P r{G = 1, B = 1, F = 0} = 0.018

Pr{G = 1, B = 0, F = 1} = 0.018, P r{G = 1, B = 0, F = 0} = 0.001

Pr{G = 0, B = 1, F = 1} = 0.162, P r{G = 0, B = 1, F = 0} = 0.072

Pr{G = 0, B = 0, F = 1} = 0.072, P r{G = 0, B = 0, F = 0} = 0.009

Special Problem 2

[Randomized Routing ]

In class, we discuss a routing algorithm on the n−bit hypercube, called bit fixing algorithm, for a node

i to send a message to a node k using d(i, k) edges where d(i, k) is the Hamming distance between i and

k. Let σ be a permutation so that for each node i ∈ {0, 1} n in the hypercube network, a message packet

mi is to be routed to node σ(i) (starting in parallel at the same time, as described in class). For each node

j, let ρj = e1e2 · · · elj be the path (i.e. the sequence of edges) followed by packet mj under the bit-fixing

algorithm. Now let i be any fixed node. Let S be the set of j 6= i such that the paths ρj and ρi share at least

one common edge. The following theorem is important for the analysis of the randomized routing algorithm

described in the last class.

Theorem A The number of steps used in delivering packet mi is no more than li + |S|. (That is, the

extra delay for packet νi is at most |S|.)
Questions:

(a) Prove Theorem A for the special case |S| = 1.

(b) Prove Theorem A for the special case |S| = 2.

(c) Prove Theorem A for any |S|.

Answer:

First, we can know for sure that, if ρi and ρj meet and then diverge, they will not meet agin.

(a) Fix i ∈ {0, 1}n and ρi = (e1, e2, · · · , eli). When |S| = 1, there is one node j that ρj shares part of edges

for example (ebj , · · · , edj
) with ρi. So there will be no congestion through all edges except (ebj , · · · , edj

) from

i to σ(i). And when congestion occurs at (ebj , · · · , edj
), there will be no more than 1 step to wait because

only one competitive package mj from node j will go through it. Thus, here we get delay(i) ≤ |S| for |S| = 1.

(b) When |S| = 2, there is two node j and k that ρj shares (ebj , · · · , edj ) and ρk shares (ebk , · · · , edk
)

with ρi = (e1, e2, · · · , eli). Obviously, there will be no congestion through all edges except the union of the

two parts of edges. And if congestion occurs at meeting edges of ρi and ρj or ρi and ρk, there will be at

most 1 step delay from each meets. Because there will be only one package from each competitive node need

to go through their meet edge. Thus, we get delay(i) ≤ |S| for |S| = 2 proved.
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(c) First, a quantity shows the delay at each time step is defined as below:(i is waiting at the head of ek
when time step t begins.)

delayt(i) = t− k

If delayt(i) = d and delayt+1(i) = d + 1 > 0, let us say that one package mj from a node j is ejected

with at d.

Let T be the time step in which i reaches its destination. Note that delay1(i) = 0 and if i reaches its

destination in T time steps, then

delayT (i) = T − li = delay of i.

We need to prove that delayT (i) ≤ |S|. If delayT (i) = D, there must be nodes ejected at d = 1, 2, · · · , D,

meaning that D ≤ |S| = all nodes can be ejected. Here we get delay(i) ≤ |S| proved for any |S|.
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