Mathematics for Computer Science: Homework 5

Xingyu Su 2015010697

April 1, 2019

Special Problem 1

[Inference in Bayesian Networks]

Consider a probability space with three binary (i.e. 0-1 valued) random variables B, F, G satisfying the following properties:
(1) B and F are independent with $\operatorname{Pr}\{B=1\}=\operatorname{Pr}\{F=1\}=0.9$;
(2) $\operatorname{Pr}\{G=1 \mid B=1, F=1\}=0.8, \operatorname{Pr}\{G=1 \mid B=1, F=0\}=0.2, \operatorname{Pr}\{G=1 \mid B=0, F=1\}=0.2$, $\operatorname{Pr}\{G=1 \mid B=0, F=0\}=0.1$.

Remarks The above random variables model a car system with B, F representing the true physical states of the battery and fuel respectively (value 1 representing full, while 0 representing empty). The random variable G represent a fuel gauge (i.e. a meter on the panel that the car driver can see), which gives a (somewhat unreliable) reading of the fuel state. Both B and F can influence (probabilistically) the result of reading the gauge G. Thus, the three random variables (together with the probability assignments) form a very simple Bayesian network, with a causal arrow pointing from B to G, and an arrow pointing from F to G.

Questions:

(a) Even without calculation, we expect the value of $\operatorname{Pr}\{F=0 \mid G=0\}$ to be greater than $\operatorname{Pr}\{F=0\}$. Why? Now for the calculation. What is $\operatorname{Pr}\{G=0\}$? What is $\operatorname{Pr}\{F=0\}$? What is $\operatorname{Pr}\{G=0 \mid F=0\}$? Use Bayes' Rule to determine the value of $\operatorname{Pr}\{F=0 \mid G=0\}$.
(b) Even without calculation, we expect the value of $\operatorname{Pr}\{F=0 \mid G=0, B=0\}$ to be less than $\operatorname{Pr}\{F=0 \mid G=0\}$ (which was calculated in (a) above). Why? Determine exactly the value of $\operatorname{Pr}\{F=$ $0 \mid G=0, B=0\}$.
(c) Give an explicit description of a probability space (Ω, p) and the realization of the random variables B, F, G in that probability space.

Answer:

We know that:

$$
\begin{gathered}
\operatorname{Pr}\{B=1\}=\operatorname{Pr}\{F=1\}=0.9, \operatorname{Pr}\{B=0\}=\operatorname{Pr}\{F=0\}=0.1 \\
\operatorname{Pr}\{G=1 \mid B=1, F=1\}=0.8, \operatorname{Pr}\{G=0 \mid B=1, F=1\}=0.1 \\
\operatorname{Pr}\{G=1 \mid B=1, F=0\}=0.2, \operatorname{Pr}\{G=0 \mid B=1, F=0\}=0.8 \\
\operatorname{Pr}\{G=1 \mid B=0, F=1\}=0.2, \operatorname{Pr}\{G=0 \mid B=0, F=1\}=0.8 \\
\operatorname{Pr}\{G=1 \mid B=0, F=0\}=0.1, \operatorname{Pr}\{G=0 \mid B=0, F=0\}=0.9
\end{gathered}
$$

(a) Because from Bayes' Theroem, we have $\operatorname{Pr}\{F=0 \mid G=0\}$ that:

$$
\operatorname{Pr}\{F=0 \mid G=0\}=\frac{\operatorname{Pr}\{G=0 \mid F=0\} \operatorname{Pr}\{F=0\}}{\operatorname{Pr}\{G=0\}}=\frac{\operatorname{Pr}\{G=0 \mid F=0\}}{\operatorname{Pr}\{G=0\}} \operatorname{Pr}\{F=0\}
$$

And with known that G represent a fuel gauge, so $\operatorname{Pr}\{G=0 \mid F=0\}$ should be greater than $\operatorname{Pr}\{G=0\}$, so $\operatorname{Pr}\{F=0 \mid G=0\}$ to be greater than $\operatorname{Pr}\{F=0\}$.
$\operatorname{Pr}\{G=0\}$ can be get by:

$$
\begin{aligned}
\operatorname{Pr}\{G=0\}= & \operatorname{Pr}\{G=0 \mid B=1, F=1\} \operatorname{Pr}\{B=1\} \operatorname{Pr}\{F=1\} \\
& +\operatorname{Pr}\{G=0 \mid B=1, F=0\} \operatorname{Pr}\{B=1\} \operatorname{Pr}\{F=0\} \\
& +\operatorname{Pr}\{G=0 \mid B=0, F=1\} \operatorname{Pr}\{B=0\} \operatorname{Pr}\{F=1\} \\
& +\operatorname{Pr}\{G=0 \mid B=0, F=0\} \operatorname{Pr}\{B=0\} \operatorname{Pr}\{F=0\} \\
= & 0.2 \times 0.9 \times 0.9+0.8 \times 0.9 \times 0.1+0.8 \times 0.1 \times 0.9+0.9 \times 0.1 \times 0.1 \\
= & 0.315
\end{aligned}
$$

And obviously, we have:

$$
\begin{aligned}
& \operatorname{Pr}\{F=0\}=1-\operatorname{Pr}\{F=1\}=0.1 \\
\operatorname{Pr}\{G=0 \mid F=0\} & =\operatorname{Pr}\{G=0 \mid B=1, F=0\} \operatorname{Pr}\{B=1\}+\operatorname{Pr}\{G=0 \mid B=0, F=0\} \operatorname{Pr}\{B=0\} \\
& =0.8 \times 0.9+0.9 \times 0.1 \\
& =0.81
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\operatorname{Pr}\{F=0 \mid G=0\} & =\frac{\operatorname{Pr}\{G=0 \mid F=0\} \operatorname{Pr}\{F=0\}}{\operatorname{Pr}\{G=0\}} \\
& =\frac{0.81 \times 0.1}{0.315} \\
& =0.257
\end{aligned}
$$

(b) Because $G=0$ has two sources: $B=0$ and $F=0$. So when $G=0, F=0$ has less probability when $B=0$. To calculate $\operatorname{Pr}\{F=0 \mid G=0, B=0\}$, first we get $\operatorname{Pr}\{G=0 \mid B=0\}$ by:

$$
\begin{aligned}
\operatorname{Pr}\{G=0 \mid B=0\} & =\operatorname{Pr}\{G=0 \mid B=0, F=1\} \operatorname{Pr}\{F=1\}+\operatorname{Pr}\{G=0 \mid B=0, F=0\} \operatorname{Pr}\{F=0\} \\
& =0.8 \times 0.9+0.9 \times 0.1 \\
& =0.81
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{Pr}\{F=0 \mid G=0, B=0\} & =\frac{\operatorname{Pr}\{G=0, B=0 \mid F=0\} \operatorname{Pr}\{F=0\}}{\operatorname{Pr}\{G=0, B=0\}} \\
& =\frac{\operatorname{Pr}\{G=0 \mid B=0, F=0\} \operatorname{Pr}\{B=0\} \operatorname{Pr}\{F=0\}}{\operatorname{Pr}\{G=0 \mid B=0\} \operatorname{Pr}\{B=0\}} \\
& =\frac{0.9 \times 0.1}{0.81} \\
& =0.111<0.257=\operatorname{Pr}\{F=0 \mid G=0\}
\end{aligned}
$$

(c) To descripe the probability space (Ω, \mathcal{F}, P), all \mathcal{F} and their probabilities should be given:

$$
\begin{aligned}
& \operatorname{Pr}\{B=1\}=0.9, \operatorname{Pr}\{F=1\}=0.9, \operatorname{Pr}\{G=1\}=0.685 \\
& \operatorname{Pr}\{B=0\}=0.1, \operatorname{Pr}\{F=0\}=0.1, \operatorname{Pr}\{G=0\}=0.315
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Pr}\{B=1, F=1\}=0.81, \operatorname{Pr}\{B=1, F=0\}=0.09 \\
\operatorname{Pr}\{B=0, F=1\}=0.09, \operatorname{Pr}\{B=0, F=0\}=0.01 \\
\operatorname{Pr}\{G=1, F=1\}=0.666, \operatorname{Pr}\{G=1, F=0\}=0.019 \\
\operatorname{Pr}\{G=0, F=1\}=0.234, \operatorname{Pr}\{G=0, F=0\}=0.081 \\
\operatorname{Pr}\{G=1, B=1\}=0.666, \operatorname{Pr}\{G=1, B=0\}=0.019 \\
\operatorname{Pr}\{G=0, B=1\}=0.234, \operatorname{Pr}\{G=0, B=0\}=0.081 \\
\\
\operatorname{Pr}\{G=1, B=1, F=1\}=0.648, \operatorname{Pr}\{G=1, B=1, F=0\}=0.018 \\
\operatorname{Pr}\{G=1, B=0, F=1\}=0.018, \operatorname{Pr}\{G=1, B=0, F=0\}=0.001 \\
\operatorname{Pr}\{G=0, B=1, F=1\}=0.162, \operatorname{Pr}\{G=0, B=1, F=0\}=0.072 \\
\operatorname{Pr}\{G=0, B=0, F=1\}=0.072, \operatorname{Pr}\{G=0, B=0, F=0\}=0.009
\end{gathered}
$$

Special Problem 2

[Randomized Routing]

In class, we discuss a routing algorithm on the n-bit hypercube, called bit fixing algorithm, for a node i to send a message to a node k using $d(i, k)$ edges where $d(i, k)$ is the Hamming distance between i and k. Let σ be a permutation so that for each node $i \in\{0,1\} \mathrm{n}$ in the hypercube network, a message packet m_{i} is to be routed to node $\sigma(i)$ (starting in parallel at the same time, as described in class). For each node j, let $\rho_{j}=e_{1} e_{2} \cdots e_{l_{j}}$ be the path (i.e. the sequence of edges) followed by packet m_{j} under the bit-fixing algorithm. Now let i be any fixed node. Let S be the set of $j \neq i$ such that the paths ρ_{j} and ρ_{i} share at least one common edge. The following theorem is important for the analysis of the randomized routing algorithm described in the last class.

Theorem A The number of steps used in delivering packet m_{i} is no more than $l_{i}+|S|$. (That is, the extra delay for packet ν_{i} is at most $|S|$.)

Questions:
(a) Prove Theorem A for the special case $|S|=1$.
(b) Prove Theorem A for the special case $|S|=2$.
(c) Prove Theorem A for any $|S|$.

Answer:

First, we can know for sure that, if ρ_{i} and ρ_{j} meet and then diverge, they will not meet agin.
(a) Fix $i \in\{0,1\}^{n}$ and $\rho_{i}=\left(e_{1}, e_{2}, \cdots, e_{l_{i}}\right)$. When $|S|=1$, there is one node j that ρ_{j} shares part of edges for example $\left(e_{b_{j}}, \cdots, e_{d_{j}}\right)$ with ρ_{i}. So there will be no congestion through all edges except $\left(e_{b_{j}}, \cdots, e_{d_{j}}\right)$ from i to $\sigma(i)$. And when congestion occurs at $\left(e_{b_{j}}, \cdots, e_{d_{j}}\right)$, there will be no more than 1 step to wait because only one competitive package m_{j} from node j will go through it. Thus, here we get $\operatorname{delay}(i) \leq|S|$ for $|S|=1$.
(b) When $|S|=2$, there is two node j and k that ρ_{j} shares $\left(e_{b_{j}}, \cdots, e_{d_{j}}\right)$ and ρ_{k} shares $\left(e_{b_{k}}, \cdots, e_{d_{k}}\right)$ with $\rho_{i}=\left(e_{1}, e_{2}, \cdots, e_{l_{i}}\right)$. Obviously, there will be no congestion through all edges except the union of the two parts of edges. And if congestion occurs at meeting edges of ρ_{i} and ρ_{j} or ρ_{i} and ρ_{k}, there will be at most 1 step delay from each meets. Because there will be only one package from each competitive node need to go through their meet edge. Thus, we get $\operatorname{delay}(i) \leq|S|$ for $|S|=2$ proved.
(c) First, a quantity shows the delay at each time step is defined as below: i is waiting at the head of e_{k} when time step t begins.)

$$
\operatorname{delay}_{t}(i)=t-k
$$

If $\operatorname{delay}_{t}(i)=d$ and $\operatorname{delay}_{t+1}(i)=d+1>0$, let us say that one package m_{j} from a node j is ejected with at d.

Let T be the time step in which i reaches its destination. Note that delay $y_{1}(i)=0$ and if i reaches its destination in T time steps, then

$$
\operatorname{delay}_{T}(i)=T-l_{i}=\text { delay of } i
$$

We need to prove that $\operatorname{delay}_{T}(i) \leq|S|$. If $\operatorname{delay}_{T}(i)=D$, there must be nodes ejected at $d=1,2, \cdots, D$, meaning that $D \leq|S|=$ all nodes can be ejected. Here we get delay $(i) \leq|S|$ proved for any $|S|$.

Acknowledgement:

Thanks to Lecture 6: Randomized routing in the hypercube for SP2b.
No thanks

