# Mathematics for Computer Science: Homework 6 

Xingyu Su 2015010697

April 8, 2019

## Special Problem 1

Show that for some fixed constants $c, c^{\prime}>0$, the randomized routing algorithm discussed in class has the following performance for Phase 2:

$$
\operatorname{Pr}\{T>c n\} \leq 2^{-c^{\prime} n}
$$

## Answer:

From Homework 4: SP3a, we have Chernoff bound as below:

$$
\operatorname{Pr}\{X \geq \beta \mu\} \leq\left(\frac{e^{\beta-1}}{\beta^{\beta}}\right)^{\mu}
$$

And in randomized routing algorithm, we have $E[T] \leq 2 n$, so:

$$
\operatorname{Pr}\{T>c n\} \leq\left(\frac{e^{c / 2-1}}{(c / 2)^{c / 2}}\right)^{2 n}=\left(\frac{c}{2 e}\right)^{-c n} e^{-2 n}
$$

So if $c \geq 4 e$, there is a $c^{\prime}$ satisfies $\operatorname{Pr}\{T>c n\} \leq 2^{-c^{\prime} n}$.

## Special Problem 2

Solve each of the following recurrence relations:
(a) $a_{0}=1, a_{1}=2, a_{n}=4 a_{n-1}-3 a_{n-2}+3 n+1$ for all $n \geq 2$.
(b) $a_{0}=1, a_{n}=\frac{a_{n-1}}{1+3 a_{n-1}}$ for $n \geq 1$.

## Answer:

(a) First, try to get the recursive equation into a simpler form that $b_{n}=4 b_{n-1}-3 b n-2$. It's easy to assume $b_{n}=a_{n}+b n^{2}+c n+d$. So:

$$
\left(a_{n}+b n^{2}+c_{n}+d\right)=4\left(a_{n-1}+b(n-1)^{2}+c(n-1)+d\right)-3\left(a_{n-2}+b(n-2)^{2}+c(n-2)+d\right)
$$

Which get:

$$
a_{n}=4 a_{n-1}-3 a_{n-2}+4 b n-8 b+2 c
$$

Compare the coefficients, we get:

$$
\begin{array}{rlrl}
4 b & =3 & b & =\frac{3}{4} \\
-8 b+2 c & =1 & c & =\frac{7}{2}
\end{array}
$$

Assume $b_{n}=a_{n}+\frac{3}{4} n^{2}+\frac{7}{2} n$, and $b_{0}=a_{0}=1, b_{1}=a_{1}+\frac{3}{4}+\frac{7}{2}=\frac{25}{8}$. And there is $b_{n}=4 b_{n-1}-3 b_{n-2}$. Let $b_{n}=z^{n}$, we get

$$
z^{2}=4 z-3
$$

The roots are: $z_{1}=1, z_{2}=3$, so $b_{n}=A+B 3^{n}$. Getting with $b_{0}=1, b_{1}=\frac{25}{8}$, we have $A=-\frac{13}{8}, B=\frac{21}{8}$. So finnaly, we get $a_{n}$ as:

$$
a_{n}=\frac{21}{8} 3^{n}-\frac{3}{4} n^{2}-\frac{7}{2} n-\frac{13}{8}
$$

(b) Consider the characteristic equation:

$$
\lambda=\frac{\lambda}{1+3 \lambda}
$$

Get roots $\lambda_{1}=\lambda_{2}=0$. And we have $a_{n}$ is never zero for the reason that $a_{0}=1 \neq 0$. So:

$$
\frac{1}{a_{n}}=\frac{1+3 a_{n-1}}{a_{n-1}}=\frac{1}{a_{n-1}}+3
$$

So obviously $\frac{1}{a_{n}}=3 n+1$ so $a_{n}=\frac{1}{3 n+1}$.

## Special Problem 3

Consider a sequence of $2 n$ people in a line at a cashier. Suppose $n$ of the people pay 1 yuan each and $n$ of the people get 1 yuan each. A paying pattern is a binary sequence $\sigma=a_{1} a_{2} \cdots a_{2 n}$ with exactly $n$ 1's and $n 0$ 's; the interpretation is that $a_{j}=1$ if person $j$ pays 1 yuan, and $a_{j}=0$ otherwise. Note that there are exactly $\binom{2 n}{n}$ paying patterns. Let $b_{n}$ denote the number of paying patterns in which the cashier never goes in debt (i.e., at every stage at least as many people have paid in 1 yuan as were paid out 1 yuan).
(a) Derive a recurrence equation for $b_{n}$, and find an explicit expression for the generating function $\sum_{n \geq 1} b_{n} x^{n}$. Determine a closed-form solution for $b_{n}$.
(b) Use an alternative way (a combinatorial proof) to establish a closed form solution $b_{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$. (Hint: Show a one-to-one correspondence between paying patterns where at some stage the cashier goes at least 1 yuan in debt and all binary sequences of length $2 n$ with exactly $n+1$ 's.)

## Answer:

(a) Counting by hands, it's easily to get $b_{1}=1, b_{2}=2, b_{3}=5$.

Consider the sequence $\sigma=a_{1} a_{2} \cdots a_{2 n}$ in which the cashier never goes in debt, then $a_{1}=1$ and since there are $n 1$ 's and $n 0$ 's, there must be a $1 \leq j \leq 2 n-1$ that $\left[a_{j}, a_{j+1}\right]=[1,0]$.

Treat the money in and out as a stack. Then the first yuan the cashier got can be paid out only at an even turn, denote as the first yuan is the $l_{\text {th }}$ got paid out at $2 l$ turn. Then there are still $l-1$ yuan paid before the first yuan and $n-l$ yuan to be paid after the first yuan. Thus, the sequence is divided into two unkown parts $a_{2}, \cdots, a_{2 l-1}$ and $a_{2 l+1}, a_{2 l+2}, \cdots, a_{2 n}$, and both of them satisfies the original rule.

So the recurrence is: (set $b_{0}=1$ for comprensively understanding)

$$
b_{n+1}=\sum_{i=0}^{n} b_{i} b_{n-i}
$$

The generating function is:

$$
\begin{aligned}
f(x) & =\sum_{i \geq 0} b_{n} x^{n}=b_{0}+b_{1} x+b_{2} x^{2}+b 3 x^{3}+\cdots \\
f^{2}(x) & =\left(\sum_{i \geq 0} b_{n} x^{n}\right)\left(\sum_{i \geq 0} b_{n} x^{n}\right) \\
& =b_{0} b_{0}+\left(b_{0} b_{1}+b_{1} b_{0}\right) x+\left(b_{0} b_{2}+b_{1} b_{1}+b_{2} b_{0}\right) x^{2}+\cdots \\
& =\sum_{n \geq 1} b_{n} x^{n-1}
\end{aligned}
$$

So $f(x)-x f^{2}(x)=b_{0}=1$, get the roots:

$$
f(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}
$$

Known that

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{1 \pm \sqrt{1-4 x}}{2 x}=b_{0}=1
$$

We get $f(x)=\frac{1-\sqrt{1-4 x}}{2 x}$, so $\sum_{n \geq 1} b_{n} x^{n}=f(x)-b_{0}=\frac{1-\sqrt{1-4 x}}{2 x}-1$. With $(1+x)^{\alpha}=1+\sum_{n=1}^{\infty}\binom{n}{\alpha} x^{n}$, we have:

$$
\begin{aligned}
(1-4 x)^{\frac{1}{2}} & =1+\sum_{n=1}^{\infty}\binom{n}{1 / 2}(-4 x)^{n} \\
& =1+\sum_{n=1}^{\infty} \frac{\frac{1}{2} \cdot\left(\frac{1}{2}-1\right) \cdots\left(\frac{3}{2}-n\right)}{n!}(-4 x)^{n} \\
& =1-\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdots(2 n-3)}{n!} 2^{n} x^{n} \\
& =1-\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdots(2 n-3)}{n!} \frac{2 \cdot 4 \cdots(2 n-2)}{(n-1)!} 2 x^{n} \\
& =1-2 \sum_{n=1}^{\infty} \frac{(2 n-2)!}{n!(n-1)!} x^{n}
\end{aligned}
$$

So:

$$
\begin{aligned}
\frac{1-\sqrt{1-4 x}}{2 x} & =\sum_{n=1}^{\infty} \frac{(2 n-2)!}{n!(n-1)!} x^{n-1} \\
& =\sum_{n=0}^{\infty} \frac{(2 n)!}{(n+1)!n!} x^{n}
\end{aligned}
$$

Finally we get: $b_{n}=\frac{(2 n)!}{(n+1)!n!} x^{n}$.
(b) Consider the sequence $\sigma=a_{1} a_{2} \cdots a_{2 n}$ and call it wanted if $\sum_{i=1}^{k}\left(2 a_{i}-1\right) \geq 0$ for all $k=1,2, \cdots, 2 n$. Then for each unwanted sequence $\sigma$, there exists at least one $k$ that $\sum_{i=1}^{k}\left(2 a_{i}-1\right) \geq 0$. So there must be a $k_{0}$ satisfies $\sum_{i=1}^{k_{0}}\left(2 a_{i}-1\right)=-1$ and all $k=1,2, \cdots, k_{0}-1$ satisfies $\sum_{i=1}^{k}\left(2 a_{i}-1\right) \geq 0$, especially $\sum_{i=1}^{k_{0}}\left(2 a_{i}-1\right)=0$.

Obviously $k_{0}$ must be an odd number, denoting as $k_{0}=2 m+1$. So there is $m$ 1's and $m$ 0's in $a_{1} a_{2} \cdots a_{2 m}$ and $a_{2 m+1}=0$. After reversing $a_{1} a_{2} \cdots a_{2 m+1}$ of $\sigma$, we will get the sequence $\sigma^{\prime}$ which has $n+11$ 's and $n-1$

0's.
On the other hand, given a sequence $\sigma^{\prime}=a_{1}^{\prime} a_{2}^{\prime} \cdots a_{2 n}^{\prime}$ which consists of $n+11$ 's and $n-10$ 's. For the reason that the number of 1's is more than 0 's, there must be a $k_{0}=2 m+1$ that $\sum_{i=1}^{k_{0}}\left(2 a_{i}-1\right)=-1$ and $\sum_{i=1}^{k}\left(2 a_{i}-1\right) \geq 0$ for all $k=1,2, \cdots, 2 m$. Reversing $a_{1}^{\prime} a_{2}^{\prime} \cdots a_{2 m+1}^{\prime}$ of $\sigma^{\prime}$, we will get a sequence $\sigma$ satisfies our rules with $n$ 1's and $n 0$ 's.

Finally, we get a one-to-one correspondence between paying patterns unwanted and all binary sequences of length $2 n$ with exactly $n+11$ 's. So the number of unwanted patterns is $\binom{2 n}{n+1}$. And there is $\binom{2 n}{n}$ sequences in total. Thus, $b_{n}=\binom{2 n}{n}-\binom{2 n}{n+1}$.

## Acknowledgement:

Thanks to Wikipedia: Catalan number for SP3a.
Thanks to Botao Hu for SP3b.

