Mathematics for Computer Science
Spring 2019
Due: 23:59, April 15, 2019

Homework Set 7

Do the following special problems:

Special Problem 1 (counted as 1 exercise) In the attachment to this home-
work set, we give a summary of the lecture delivered today. In particular,
Theorem 1 states that, under some assumptions on f(z), the power series
coefficients a,, of f(z) can be expressed as a linear combination of residues
of f(2)/2""! at 2z = z;. Assume that we have proved Theorem 1.
Question: Prove Corollary 2.

Special Problem 2 (counted as 2 exercises) Let

3
f(Z):m-

(a) Let n > 0. Determine the residue of f(2)/2""! at 2 = 5i.

(b) Use Theorem 1 to determine the power series expansion of f(z) =
Y on>0an2". Does this agree with the answer you would get if you apply
Newton’s binomial theorem to the expression (1 — z/5i)~2?

Special Problem 3 (counted as 3 exercises) Let A(z) = 2 be a func-
tion over the complex plane, where A > 1 is a real number.

(a) Where are all the singularities of A on the complex plane? Are they
isolated singularities? Determine the residue of A at each of its isolated
singularities.

(b) Consider the power series expansion A(z) = Y_,,~ a,2z" in the neighbor-
hood of z = 0. Find a closed-form expression g(n) in variable n, such that
lim,, o0 % = 1. You should give your reasoning rigorously.

(c) Consider the following recurrence relation: by = 1, and for n > 1,
2n
b= bk< )
0<k<n—1 2k

Find a closed-form expression h(n) in variable n, such that lim,, % =1.



Lecture Notes on Power Series Expansion for tan z

A complex function f(z) has a pole singularity at zg, if for some € > 0,
f(2) can be written as a convergent series

f) = Y — T 3 bz 20),

2 —z)d =

for all z satisfying 0 < |z — 29| < €, where m, ¢;, b, are constants. We call
m the order of the pole, and ¢ the residue of the pole at zyg. The pole is
simple, if its order is m = 1.

Let R > 0 be any positive real number. Define the symmetric rectangle
Cr as the set of {z = = + iy | max{x,y} = R}. That is, Cr is the boundary
of the 2R x 2R square, centered at the origin in the complex plane and with
its sides parallel to the x and y axes.

Theorem 1 Let f(z) be a complex function with only isolated pole singu-
larities z; with 0 < |21]| < |22| < ---. Assume that there exists a sequence of
symmetric rectangles Cg,, R; — 0o as i — 00, such that f(z) < § for some
fixed constant 8 > 0 for all z € Cg,. Then the power series expansion of f
at z =0, f(z) =>,,>0 anz" satisfies for all n > 0

an = — Y _(Residue of ﬁfiz at z = z;).
i>1

Corollary 2 If all poles are simple, then for all n > 0
T

n+1°’
i>1 <1

Ay = —

where 7 is the residue of f(z) at z;:.

We now apply the above corollary to analyze the power series coefficients
for tan z.

Fact 1 The function tanz has only simple pole singularities, located at
zj=(j+ %)ﬂ' for integers j and with residues r; all equal to —1.

Proof By definition tan z = sin z/ cos z = (e* —e™%*) /i(e'* + ¢~**). This
implies,

tanz = —i + 2i (1)
Thus, the singularities of tanz are where 1 + e“* = 0, i.e. at z; for all
integers j. Note, with A = z — z;, we have in some small neighborhood
Al <,

1+ e2iz

21z

14627 =1 — %8 = _2iA(g(A)),



where g(0) = Land g(A) = 3,59 m(%A)" is non-zero and differentiable.
This gives

1 .
tanz = —i — A + power series in A.
Fact 1 follows. Q.E.D.

Before invoking Corollary 2 to determine the power series for f(z) =
tan z, we need to show that there exists a sequence of large rectangles Cg,
on which f(z) has values bounded by a constant §. Consider R; = jm, and
the symmetric rectangles Cg;.

Fact 2 Let j > 0 be any integer. Then |tan z| < 5 for any z on CRr;.

Proof It suffices to prove that |1 + e%Z#| > 1/2 for any such z, because
of (1).
Case (a) z = jm + iy, or —jm +dy: Then |1 + 2| =1+ e % > 1.
Case (b) z = x+ jm, or x — jm: Then |1+ e?#| > min{l — e~ 27 2™ — 1} >
1/2. This proves Fact 2. Q.E.D.

We now use Corollary 2 to derive an expression for the power series
coefficients of tanz = 3, ~qb,2". Clearly by = tan0 = 0. For n > 1, we

obtain
1

by, = Z 1
. 1 ’I’L+1 b
integers j ((G+2)7)
which gives b, = 0 for all even integers n (For each j > 0, the terms j and
—(j + 1) have opposite signs and cancel out.) For all odd positive integers

n, we have

2n+1
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The above expression represents a, nicely, even the first few terms give
a fairly good approximation. In fact for large n this gives an extremely
2)nJrl

accurate asymptotic form b, ~ (W



