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Homework Set 7

Do the following special problems:

Special Problem 2 (counted as 2 exercises) Let

f(z) =
3

(z − 5i)2
.

(a) Let n > 0. Determine the residue of f(z)/zn+1 at z = 5i.
(b) Use Theorem 1 to determine the power series expansion of f(z) =∑

n≥0 anz
n. Does this agree with the answer you would get if you apply

Newton’s binomial theorem to the expression (1− z/5i)−2?

Special Problem 3 (counted as 3 exercises) Let A(z) = 1
λ−ez be a func-

tion over the complex plane, where λ > 1 is a real number.
(a) Where are all the singularities of A on the complex plane? Are they
isolated singularities? Determine the residue of A at each of its isolated
singularities.
(b) Consider the power series expansion A(z) =

∑
n≥0 anz

n in the neighbor-
hood of z = 0. Find a closed-form expression g(n) in variable n, such that
limn→∞

an
g(n) = 1. You should give your reasoning rigorously.

(c) Consider the following recurrence relation: b0 = 1, and for n ≥ 1,

bn =
∑

0≤k≤n−1

bk

(
2n

2k

)
.

Find a closed-form expression h(n) in variable n, such that limn→∞
bn
h(n) = 1.

Special Problem 1 (counted as 1 exercise) In the attachment to this home- 
work set, we give a summary of the lecture delivered today. In particular, 
Theorem 1 states that, under some assumptions on f(z), the power series 
coefficients an of f(z) can be expressed as a linear combination of residues 
of f(z)/zn+1 at z = zj. Assume that we have proved Theorem 1.
Question: Prove Corollary 2.



Lecture Notes on Power Series Expansion for tan z

A complex function f(z) has a pole singularity at z0, if for some ϵ > 0,
f(z) can be written as a convergent series

f(z) =
∑

1≤j≤m

cj
(z − z0)j

+
∑
n≥0

bn(z − z0)
n,

for all z satisfying 0 < |z − z0| < ϵ, where m, cj , bn are constants. We call
m the order of the pole, and c1 the residue of the pole at z0. The pole is
simple, if its order is m = 1.

Let R > 0 be any positive real number. Define the symmetric rectangle
CR as the set of {z = x+ iy | max{x, y} = R}. That is, CR is the boundary
of the 2R×2R square, centered at the origin in the complex plane and with
its sides parallel to the x and y axes.

Theorem 1 Let f(z) be a complex function with only isolated pole singu-
larities zi with 0 < |z1| ≤ |z2| ≤ · · ·. Assume that there exists a sequence of
symmetric rectangles CRi , Ri → ∞ as i → ∞, such that f(z) ≤ β for some
fixed constant β > 0 for all z ∈ CRi . Then the power series expansion of f
at z = 0, f(z) =

∑
n≥0 anz

n satisfies for all n > 0

an = −
∑
i≥1

(Residue of
f(z)

zn+1
at z = zi).

Corollary 2 If all poles are simple, then for all n > 0

an = −
∑
i≥1

ri

zn+1
i

,

where rj is the residue of f(z) at zi.

We now apply the above corollary to analyze the power series coefficients
for tan z.

Fact 1 The function tan z has only simple pole singularities, located at
zj = (j + 1

2)π for integers j and with residues rj all equal to −1.

Proof By definition tan z = sin z/ cos z = (eiz−e−iz)/i(eiz+e−iz). This
implies,

tan z = −i+ 2i
1

1 + e2iz
. (1)

Thus, the singularities of tan z are where 1 + e2iz = 0, i.e. at zj for all
integers j. Note, with ∆ = z − zj , we have in some small neighborhood
|∆| ≤ ϵ,

1 + e2iz = 1− e2i∆ = −2i∆(g(∆)),



where g(0) = 1 and g(∆) =
∑

n≥0
1

(n+1)!(2i∆)n is non-zero and differentiable.
This gives

tan z = −i− 1

∆
+ power series in ∆.

Fact 1 follows. Q.E.D.

Before invoking Corollary 2 to determine the power series for f(z) =
tan z, we need to show that there exists a sequence of large rectangles CRi

on which f(z) has values bounded by a constant β. Consider Rj = jπ, and
the symmetric rectangles CRj .

Fact 2 Let j > 0 be any integer. Then | tan z| < 5 for any z on CRj .

Proof It suffices to prove that |1 + e2iz| > 1/2 for any such z, because
of (1).
Case (a) z = jπ + iy, or −jπ + iy: Then |1 + e2iz| = 1 + e−2y > 1.
Case (b) z = x+ jπ, or x− jπ: Then |1+ e2iz| ≥ min{1− e−2jπ, e2jπ − 1} >
1/2. This proves Fact 2. Q.E.D.

We now use Corollary 2 to derive an expression for the power series
coefficients of tan z =

∑
n≥0 bnz

n. Clearly b0 = tan 0 = 0. For n ≥ 1, we
obtain

bn =
∑

integers j

1

((j + 1
2)π)

n+1
,

which gives bn = 0 for all even integers n (For each j ≥ 0, the terms j and
−(j + 1) have opposite signs and cancel out.) For all odd positive integers
n, we have

bn = 2
∑
j≥0

2n+1

((2j + 1)π)n+1

= 2

(
2

π

)n+1 ( 1

1n+1
+

1

3n+1
+ · · ·+ 1

(2k + 1)n+1
+ · · ·

)
. (2)

The above expression represents an nicely, even the first few terms give
a fairly good approximation. In fact for large n this gives an extremely

accurate asymptotic form bn ≈ 2
(
2
π

)n+1
.


