Mathematics for Computer Science
Spring 2019
Due: 23:59, April 15, 2019

## Homework Set 7

Do the following special problems:
Special Problem 1 (counted as 1 exercise) In the attachment to this homework set, we give a summary of the lecture delivered today. In particular, Theorem 1 states that, under some assumptions on $f(z)$, the power series coefficients $a_{n}$ of $f(z)$ can be expressed as a linear combination of residues of $f(z) / z^{n+1}$ at $z=z_{j}$. Assume that we have proved Theorem 1.
Question: Prove Corollary 2.
Special Problem 2 (counted as 2 exercises) Let

$$
f(z)=\frac{3}{(z-5 i)^{2}}
$$

(a) Let $n>0$. Determine the residue of $f(z) / z^{n+1}$ at $z=5 i$.
(b) Use Theorem 1 to determine the power series expansion of $f(z)=$ $\sum_{n \geq 0} a_{n} z^{n}$. Does this agree with the answer you would get if you apply Newton's binomial theorem to the expression $(1-z / 5 i)^{-2}$ ?

Special Problem 3 (counted as 3 exercises) Let $A(z)=\frac{1}{\lambda-e^{z}}$ be a function over the complex plane, where $\lambda>1$ is a real number.
(a) Where are all the singularities of $A$ on the complex plane? Are they isolated singularities? Determine the residue of $A$ at each of its isolated singularities.
(b) Consider the power series expansion $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ in the neighborhood of $z=0$. Find a closed-form expression $g(n)$ in variable $n$, such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{g(n)}=1$. You should give your reasoning rigorously.
(c) Consider the following recurrence relation: $b_{0}=1$, and for $n \geq 1$,

$$
b_{n}=\sum_{0 \leq k \leq n-1} b_{k}\binom{2 n}{2 k}
$$

Find a closed-form expression $h(n)$ in variable $n$, such that $\lim _{n \rightarrow \infty} \frac{b_{n}}{h(n)}=1$.

## Lecture Notes on Power Series Expansion for tan z

A complex function $f(z)$ has a pole singularity at $z_{0}$, if for some $\epsilon>0$, $f(z)$ can be written as a convergent series

$$
f(z)=\sum_{1 \leq j \leq m} \frac{c_{j}}{\left(z-z_{0}\right)^{j}}+\sum_{n \geq 0} b_{n}\left(z-z_{0}\right)^{n},
$$

for all $z$ satisfying $0<\left|z-z_{0}\right|<\epsilon$, where $m, c_{j}, b_{n}$ are constants. We call $m$ the order of the pole, and $c_{1}$ the residue of the pole at $z_{0}$. The pole is simple, if its order is $m=1$.

Let $R>0$ be any positive real number. Define the symmetric rectangle $C_{R}$ as the set of $\{z=x+i y \mid \max \{x, y\}=R\}$. That is, $C_{R}$ is the boundary of the $2 R \times 2 R$ square, centered at the origin in the complex plane and with its sides parallel to the $x$ and $y$ axes.

Theorem 1 Let $f(z)$ be a complex function with only isolated pole singularities $z_{i}$ with $0<\left|z_{1}\right| \leq\left|z_{2}\right| \leq \cdots$. Assume that there exists a sequence of symmetric rectangles $C_{R_{i}}, R_{i} \rightarrow \infty$ as $i \rightarrow \infty$, such that $f(z) \leq \beta$ for some fixed constant $\beta>0$ for all $z \in C_{R_{i}}$. Then the power series expansion of $f$ at $z=0, f(z)=\sum_{n \geq 0} a_{n} z^{n}$ satisfies for all $n>0$

$$
a_{n}=-\sum_{i \geq 1}\left(\text { Residue of } \frac{f(z)}{z^{n+1}} \text { at } z=z_{i}\right) .
$$

Corollary 2 If all poles are simple, then for all $n>0$

$$
a_{n}=-\sum_{i \geq 1} \frac{r_{i}}{z_{i}^{n+1}},
$$

where $r_{j}$ is the residue of $f(z)$ at $z_{i}$.
We now apply the above corollary to analyze the power series coefficients for $\tan z$.

Fact 1 The function $\tan z$ has only simple pole singularities, located at $z_{j}=\left(j+\frac{1}{2}\right) \pi$ for integers $j$ and with residues $r_{j}$ all equal to -1 .

Proof By definition $\tan z=\sin z / \cos z=\left(e^{i z}-e^{-i z}\right) / i\left(e^{i z}+e^{-i z}\right)$. This implies,

$$
\begin{equation*}
\tan z=-i+2 i \frac{1}{1+e^{2 i z}} . \tag{1}
\end{equation*}
$$

Thus, the singularities of $\tan z$ are where $1+e^{2 i z}=0$, i.e. at $z_{j}$ for all integers $j$. Note, with $\Delta=z-z_{j}$, we have in some small neighborhood $|\Delta| \leq \epsilon$,

$$
1+e^{2 i z}=1-e^{2 i \Delta}=-2 i \Delta(g(\Delta)),
$$

where $g(0)=1$ and $g(\Delta)=\sum_{n \geq 0} \frac{1}{(n+1)!}(2 i \Delta)^{n}$ is non-zero and differentiable. This gives

$$
\tan z=-i-\frac{1}{\Delta}+\text { power series in } \Delta
$$

Fact 1 follows. Q.E.D.
Before invoking Corollary 2 to determine the power series for $f(z)=$ $\tan z$, we need to show that there exists a sequence of large rectangles $C_{R_{i}}$ on which $f(z)$ has values bounded by a constant $\beta$. Consider $R_{j}=j \pi$, and the symmetric rectangles $C_{R_{j}}$.

Fact 2 Let $j>0$ be any integer. Then $|\tan z|<5$ for any $z$ on $C_{R_{j}}$.
Proof It suffices to prove that $\left|1+e^{2 i z}\right|>1 / 2$ for any such $z$, because of (1).
Case (a) $z=j \pi+i y$, or $-j \pi+i y$ : Then $\left|1+e^{2 i z}\right|=1+e^{-2 y}>1$.
Case (b) $z=x+j \pi$, or $x-j \pi$ : Then $\left|1+e^{2 i z}\right| \geq \min \left\{1-e^{-2 j \pi}, e^{2 j \pi}-1\right\}>$ $1 / 2$. This proves Fact 2. Q.E.D.

We now use Corollary 2 to derive an expression for the power series coefficients of $\tan z=\sum_{n \geq 0} b_{n} z^{n}$. Clearly $b_{0}=\tan 0=0$. For $n \geq 1$, we obtain

$$
b_{n}=\sum_{\text {integers } j} \frac{1}{\left(\left(j+\frac{1}{2}\right) \pi\right)^{n+1}},
$$

which gives $b_{n}=0$ for all even integers $n$ (For each $j \geq 0$, the terms $j$ and $-(j+1)$ have opposite signs and cancel out.) For all odd positive integers $n$, we have

$$
\begin{align*}
b_{n} & =2 \sum_{j \geq 0} \frac{2^{n+1}}{((2 j+1) \pi)^{n+1}} \\
& =2\left(\frac{2}{\pi}\right)^{n+1}\left(\frac{1}{1^{n+1}}+\frac{1}{3^{n+1}}+\cdots+\frac{1}{(2 k+1)^{n+1}}+\cdots\right) \tag{2}
\end{align*}
$$

The above expression represents $a_{n}$ nicely, even the first few terms give a fairly good approximation. In fact for large $n$ this gives an extremely accurate asymptotic form $b_{n} \approx 2\left(\frac{2}{\pi}\right)^{n+1}$.

