Mathematics for Computer Science：Homework 7

Xingyu Su 2015010697
April 15， 2019

Special Problem 1

In the attachment to this homework set，we give a summary of the lecture delivered today．In particular， Theorem 1 states that，under some assumptions on $f(z)$ ，the power series coefficients a_{n} of $f(z)$ can be expressed as a linear combination of residues of $f(z) / z_{n+1}$ at $z=z_{j}$ ．Assume that we have proved Theorem 1.

Question：Prove Corollary 2.

Answer：

From 5.1 of 《复变函数简明教程》，we know for $z_{0} \neq \infty$ is a m order pole singularity of $f(z)$ ，residue of $f(z)$ at $z=z_{0}$ is：

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

So with Theorem 1，power expansion of f at $z=0, f(z)=\sum_{n \geq 0} a_{n} z^{n}$ having（Since the power expansion is from $z=0$ ）

$$
\begin{aligned}
a_{n} & =-\sum_{i \geq 1} \operatorname{Res}\left(\frac{f(z)}{z^{n+1}}, z_{i}\right) \\
& =-\sum_{i \geq 1} \frac{1}{(m-1)!} \lim _{z \rightarrow z_{i}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{i}\right)^{m} \frac{f(z)}{z^{n+1}}\right] \\
& =-\sum_{i \geq 1} \frac{1}{z_{i}^{n+1}} \frac{1}{(m-1)!} \lim _{z \rightarrow z_{i}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{i}\right)^{m} f(z)\right] \\
& =-\sum_{i \geq 1} \frac{\operatorname{Res}\left(f, z_{i}\right)}{z_{i}^{n+1}}
\end{aligned}
$$

Special Problem 2

Let

$$
f(z)=\frac{3}{(z-5 i)^{2}}
$$

（a）Let $n>0$ ．Determine the residue of $f(z) / z^{n+1}$ at $z=5 i$ ．
（b）Use Theorem 1 to determine the power series expansion of $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ ．Does this agree with the answer you would get if you apply Newton＇s binomial theorem to the expression $(1-z / 5 i)^{-2}$ ？

Answer：

(a) Easy to know that $z_{1}=5 i$ is a second order pole singularity of f. So $f(z) / z^{n+1}$ have a second order pole singularity at $z_{1}=5 i$ expect $z_{0}=0$. With the formula mentioned above, we have:

$$
\begin{aligned}
\operatorname{Res}\left(\frac{f(z)}{z^{n+1}}, z_{1}\right) & =\frac{1}{1!} \lim _{z \rightarrow 5 i} \frac{d}{d z}\left[(z-5 i)^{2} \frac{f(z)}{z^{n+1}}\right] \\
& =3 \lim _{z \rightarrow 5 i} \frac{d}{d z}\left[\frac{1}{z^{n+1}}\right] \\
& =-\frac{3}{25} \frac{(n+1)}{(5 i)^{n}}
\end{aligned}
$$

(b) With Theorem 1 and results from (a), we have:

$$
a_{n}=-\sum_{i \geq 1} \operatorname{Res}\left(\frac{f(z)}{z^{n+1}}, z_{i}\right)=-\operatorname{Res}\left(\frac{f(z)}{z^{n+1}}, z_{1}\right)=-\frac{3}{25} \frac{n+1}{(5 i)^{n}}
$$

And Newton's binomial theorem with negative exponents have:

$$
(1+z)^{-k}=\sum_{n \geq 0}(-1)^{n}\binom{k+n-1}{n} z^{n}
$$

So there is:

$$
\begin{aligned}
\left(1-\frac{z}{5 i}\right)^{-2} & =\sum_{n \geq 0}(-1)^{n}\binom{n+1}{n}\left(-\frac{z}{5 i}\right)^{n} \\
& =\sum_{n \geq 0}\binom{n+1}{n}(5 i)^{-n} z^{n}
\end{aligned}
$$

And known that:

$$
f(z)=\frac{3}{(z-5 i)^{2}}=\frac{3}{(5 i)^{2}}\left(\frac{5 i-z}{5 i}\right)^{-2}=-\frac{3}{25}\left(1-\frac{z}{5 i}\right)^{-2}
$$

So power series expansion coefficients a_{n}^{\prime} from Newton's binomial theorem is:

$$
a_{n}^{\prime}=-\frac{3}{25}\binom{n+1}{n}(5 i)^{-n}=-\frac{3}{25} \frac{n+1}{(5 i)^{n}}=a_{n}
$$

Special Problem 3

Let $A(z)=\frac{1}{\lambda-e^{z}}$ be a function over the complex plane, where $\lambda>1$ is a real number.
(a) Where are all the singularities of A on the complex plane? Are they isolated singularities? Determine the residue of A at each of its isolated singularities.
(b) Consider the power series expansion $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ in the neighborhood of $z=0$. Find a closed-form expression $g(n)$ in variable n, such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{g(n)}=1$. You should give your reasoning rigorously.
(c) Consider the following recurrence relation: $b_{0}=1$, and for $n \geq 1$,

$$
b_{n}=\sum_{0 \leq k \leq n-1} b_{k}\binom{2 n}{2 k}
$$

Find a closed-form expression $h(n)$ in variable n, such that $\lim _{n \rightarrow \infty} \frac{b_{n}}{h(n)}=1$.
Answer:
（a）Easy to know that when $z=\ln \lambda+2 k \pi$ for $k \in \mathcal{Z}, \lambda-e^{z}=0$ ，so $z_{k}=\ln \lambda+2 k \pi, k \in \mathcal{Z}$ are isolated singularities of A ．

$$
\operatorname{Res}(f, \ln \lambda+2 k \pi)=\operatorname{Res}(f, \ln \lambda)=\lim _{z \rightarrow \ln \lambda}(z-\ln \lambda) \frac{1}{\lambda-e^{z}}=\lim _{z \rightarrow \ln \lambda} \frac{1}{-e^{z}}=-\frac{1}{\lambda}
$$

（b）Since $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ and all singularities z_{k} have only one order．So a_{n} ：

$$
\begin{aligned}
a_{n} & =-\sum_{k=-\infty}^{+\infty} \operatorname{Res}\left(\frac{1}{\left(\lambda-e^{z}\right) z^{n+1}}, z_{k}\right) \\
& =-\sum_{k=-\infty}^{+\infty} \lim _{z \rightarrow z_{k}}\left(z-z_{k}\right) \frac{1}{\lambda-e^{z}} \frac{1}{z^{n+1}} \\
& =\frac{1}{\lambda} \sum_{k=-\infty}^{+\infty} \frac{1}{z_{k}^{n+1}} \\
& =\frac{1}{\lambda} \sum_{k=-\infty}^{+\infty} \frac{1}{(\ln \lambda+2 k \pi)^{n+1}}
\end{aligned}
$$

And obviously，when $n \rightarrow \infty$ ，terms smaller than 1 with exponent $n+1$ decreases rapidly．So with $g(n)=\frac{1}{\lambda} \frac{1}{(\ln \lambda+2 m \pi)^{n+1}}$ where：

$$
|\ln \lambda+2 m \pi|=\min _{k}\{|\ln \lambda+2 k \pi|\}
$$

For example，when $\lambda=e, \ln \lambda=1, m=-1, g(n)=(1-2 \pi)^{-(n+1)} / e$
（c）With

$$
\begin{aligned}
b_{n} & =\sum_{k=0}^{n-1} b_{k}\binom{2 n}{2 k} \\
& =\sum_{k=0}^{n-2} b_{k}\binom{2 n}{2 k}+n(2 n-1) b_{n-1} \\
& \leq\left[\frac{(2 n-1) n}{6}+n(2 n-1)\right] b_{n-1} \\
& =\frac{7}{6}\left(2 n^{2}-n\right) b_{n-1}
\end{aligned}
$$

And

$$
\begin{aligned}
b_{n} & =\sum_{k=0}^{n-1} b_{k}\binom{2 n}{2 k} \\
& =\sum_{k=0}^{n-2} b_{k}\binom{2 n}{2 k}+n(2 n-1) b_{n-1} \\
& \geq\left(2 n^{2}-n\right) b_{n-1}
\end{aligned}
$$

So $h(n)=(2 n-1)!!n!$ is a close form that has $\lim _{n \rightarrow \infty} \frac{b_{n}}{h(n)}=1$

Acknowledgement：

Thanks to 《复变函数简明教程》 for SP1

