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Special Problem 1

In the attachment to this homework set, we give a summary of the lecture delivered today. In particular,
Theorem 1 states that, under some assumptions on f(z), the power series coefficients a, of f(z) can be
expressed as a linear combination of residues of f(z)/z,4+1 at z = z;. Assume that we have proved Theorem
1.

Question: Prove Corollary 2.

Answer:
From 5.1 of (&2 pREH AL ) | we know for zg # oo is a m order pole singularity of f(z), residue of
f(z) at z = zg is:
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Res(f,z0) = [(z = 20)" f(2)].

So with Theorem 1, power expansion of f at z =0, f(z) = >_, -, an2" having (Since the power expansion
is from z = 0)
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Special Problem 2

Let
3

f(2)2m~

(a) Let n > 0. Determine the residue of f(z)/2""! at 2z = 5i.
(b) Use Theorem 1 to determine the power series expansion of f(z) =" ., a,2". Does this agree with
the answer you would get if you apply Newton’s binomial theorem to the expression (1 — z/5i) =2

Answer:
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Homework 7 Special Problem 2 (continued)

(a) Easy to know that z; = 5i is a second order pole singularity of f. So f(z)/2"*! have a second order
pole singularity at z; = 5¢ expect zg = 0. With the formula mentioned above, we have:

Res( 1(z) 21) = LS lim i[(z — 5;)? f(z)]
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(b) With Theorem 1 and results from (a), we have:
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p = — ZRes(an,zi) = —Res(ZnH,zl) =5 G

i>1

And Newton’s binomial theorem with negative exponents have:
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So power series expansion coefficients a,, from Newton’s binomial theorem is:
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Special Problem 3

Let A(z) = ﬁ be a function over the complex plane, where A > 1 is a real number.

(a) Where are all the singularities of A on the complex plane? Are they isolated singularities? Determine
the residue of A at each of its isolated singularities.

(b) Consider the power series expansion A(z) = > ., a,2" in the neighborhood of z = 0. Find a
closed-form expression g(n) in variable n, such that limy, o0 % = 1. You should give your reasoning
rigorously.

(c) Consider the following recurrence relation: by = 1, and for n > 1,

b= Y bk@Z)
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Find a closed-form expression h(n) in variable n, such that lim, hlz:i 5 = 1.
Answer:

Special Problem 3 continued on next page. .. Page 2 of 3



Homework 7 Special Problem 3 (continued)

(a) Easy to know that when z =In A+ 2kw for k € Z, A —e* =0, so 2z = In A + 2km, k € Z are isolated
singularities of A.

Res(f,In X+ 2km) = Res(f,In\) = lim (z —1In\) LI lim LI

z—1In A A—€e*  zolnx —e*

> =

(b) Since A(z) = 3_,,5( an2z" and all singularities z; have only one order. So ay:
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And obviously, when n — oo, terms smaller than 1 with exponent n + 1 decreases rapidly. So with
g(n) = %7(111 )\H%W)nﬂ where:
|[In A + 2mmn| = mkin{| In A + 2kw|}

For example, when A = e,In\ =1, m = —1, g(n) = (1 — 27)~ "+ /e
() With

And

So h(n) = (2n — 1)!In! is a close form that has lim,_, hIETﬁ =
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