Mathematics for Computer Science: Homework 8

Xingyu Su 2015010697

April 18, 2019

Special Problem 1

In class we discussed the Mr. P and Mr. S problem, in which a conversation with 4 rounds of communications takes place. Let $2 \leq m<98 n \leq 99$. Of the $\binom{98}{2}=4753$ pairs of (m, n) in the range, let a_{j} be the number of pairs leading to this conversation (exactly as stated in class) stopping (and unable to continue) after exactly j rounds for $j=0,1,2,3,4$, respectively. You should get $a_{4}=1$.

Mr. P and Mr. S problem: Two numbers m and n are chosen such that $2 \leq m \leq n \leq 99 . M r . S$ is told their sum and Mr. P is told their product. The following dialogue ensues:

Mr. P: I don't know the numbers.
Mr. S: I knew you didn't know. I don't know either.
Mr. P: Now I know the numbers.
Mr. S: Now I know them too.
Question: Write a computer program and determine the values of $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$. You should give a concise explanation of the principles of your design.

Answer:

It's not difficult to analyze this problem. Step by step we can get all a_{j}.
(1) To get a_{0}, we need to know exactly when will Mr. P don't know the numbers. That means, the product given to him is not unique of products in all pertubations. Define the whole produts array as muls. Count them one by one, we will know the times each mul shows up. Then select all situations that mul more than one time, we get a_{0} situations left.
(2) To get a_{1}, we need to know when $M r$. S knew Mr. P didn't know. Define the whole sums array as sums. All situations that mul shows exactly one time will make Mr. P know the numbers. So Mr. S knows that the sum given to him will not lead to situation like that. Which means, his sum does not belong to the sums that corresponding muls are unique. Here we get a_{1}.
(3) To get a_{2}, we need to know when $M r$. S still don't know the numbers. First we should reduce the scope of results in to a_{1}. Then similar to (1), counting all sums and the ones not unique are which the numbers could belong to. a_{2} is the number of these situations.
(4) a_{3} is the number of situations that Mr. P know the results under all situations represented by a_{2}. So the product $M r$. P got is unique in a_{2} situations. Counting this, we get a_{3} now.
(5) Mr. S now knows the results lead to similar counting process in (4). Counting all sums in a_{3} and find all unique ones. We finally get a_{4}.

The program is clear now. I choose python as programming language since it's easy to do counting and selection. To get counting part seperated, I used collections. Counter function and mapping to write a IndexFilter that can get all index that corresponding values in fvals satisifying condition of counting cvals.

The code I wrote is as below:

```
#/usr/bin/env python
import numpy as np
from collections import Counter
def IndexFilter(cvals, fvals, condition=lambda fvi: True):
    counter = Counter(cvals)
    return [i for i,fvi in enumerate(fvals) if condition(counter[fvi])]
if __name__ == '__main__':
    # initialize
    numbers = np.array([(m,n) for m in range(2,100) for n in range(m+1,100)])
    sums = np.array([m+n for (m,n) in numbers])
    muls = np.array([m*n for (m,n) in numbers])
    # Subsets: when having no infomation, Mr.P don't know
    idx_a0 = IndexFilter(muls, muls, condition=lambda fmi: fmi>1)
    idx_a0_op = IndexFilter(muls, muls, condition=lambda fmi: fmi==1)
    # Subsets: Mr.S know Mr.P don't know
    opps = sums[idx_a0_op]
    idx_a1 = IndexFilter(opps, sums, condition=lambda fsi: fsi==0)
    # Subsets: Mr.S still don't know.
    sums,muls = sums[idx_a1],muls[idx_a1]
    idx_a2 = IndexFilter(sums, sums, condition=lambda fsi: fsi>1)
    # Subsets: Mr.P now know the answer.
    sums,muls = sums[idx_a2],muls[idx_a2]
    idx_a3 = IndexFilter(muls, muls, condition=lambda fmi: fmi==1)
    # Subsets: Mr.S now know the answer.
    sums,muls = sums[idx_a3],muls[idx_a3]
    idx_a4 = IndexFilter(sums, sums, condition=lambda fsi: fsi==1)
    # show results
    m,n = numbers[idx_a1][idx_a2][idx_a3][idx_a4][0]
    print("a0 = %d"%len(idx_a0))
    print("a1 = %d"%len(idx_a1))
    print("a2 = %d"%len(idx_a2))
    print("a3 = %d"%len(idx_a3))
    print("a4 = %d"%len(idx_a4))
    print("m = %d, n = %d"%(m,n))
```

The results of a_{j} are:

$$
a_{0}=3021, a_{1}=145, a_{2}=145, a_{3}=86, a_{4}=1
$$

and the numbers are:

$$
m=4, n=13, m+n=17, m \times n=52
$$

Special Problem 2

Let \mathcal{C} be the unit circle on the complex plane, traversed counter-clockwise. Let n be any integer (positive, negative and zero), and $A_{n}=\oint_{\mathcal{C}} z^{n}$. \mathcal{C} Determine the value of A_{n}. You should give a justification of your answer.

Answer:

To solve the integral along with unit circle on the complex plane, define the unit circle as $\gamma(\theta)=e^{i \theta}$. So:

$$
\begin{aligned}
A_{n}=\oint_{\mathcal{C}} z^{n} & =\int_{0}^{2 \pi} e^{i n \theta} d e^{i \theta} \\
& =\int_{0}^{2 \pi} i e^{(n+1) \theta} d \theta \\
& =i \int_{0}^{2 \pi} \cos [(n+1) \theta] d \theta-\int_{0}^{2 \pi} \sin [(n+1) \theta] d \theta
\end{aligned}
$$

Easy to know that when $n+1 \neq 0, \int_{0}^{2 \pi} \cos [(n+1) \theta] d \theta=\int_{0}^{2 \pi} \sin [(n+1) \theta] d \theta=0$. So $A_{n}=0$, for $n \neq-1$. When $n=-1$, we have:

$$
A_{n}=\int_{0}^{2 \pi} i d \theta=2 \pi i
$$

So, the results are:

$$
A_{n}= \begin{cases}2 \pi i, & n=-1 \\ 0, & \text { else }\end{cases}
$$

For justification, consider the Cauchy integral theorem that:
When f is a holomorphic function, and let \mathcal{C} be a rectifiable path whose start point is equal to its end point. Then

$$
\oint_{\mathcal{C}} f(z) d z=0
$$

For all $n \geq 0, f(z)=z^{n}$ is obvious holomorphic, so $A_{n}=0$ for $n=0,1,2, \cdots$. The method used before for solving $n=-1$ is totally calculus and is unnecessary to be discussed here. For the cases that $n<-1$. We know the Residue theorem that:

$$
\oint_{\mathcal{C}} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Re} s\left(f, z_{k}\right)
$$

where \mathcal{C} is a positively oriented simple closed curve and z_{k} are poles. And the residue:

$$
\operatorname{Res}\left(f, z_{k}\right)=\lim _{z \rightarrow z_{k}} \frac{1}{(k-1)!} \frac{d^{k-1}}{d z^{k-1}}(z-c)^{k} f(z)
$$

So for $f(z)=z^{-n}, n>1$, we have an n order pole $z=0$.

$$
A_{n}=\oint_{\mathcal{C}} f(z) d z=2 \pi i \lim _{z \rightarrow 0} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} z^{n} z^{-n}=0 .
$$

In summary, the results still are:

$$
A_{n}= \begin{cases}2 \pi i, & n=-1 \\ 0, & \text { else }\end{cases}
$$

Acknowledgement:

Thanks to Cauchy integral theorem and Residue theorem for SP2.

